Oxidative Stress in the Oral Cavity before and After Prosthetic Treatment

Authors

  • Zlatina Tomova Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
  • Desislav Tomov Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria https://orcid.org/0000-0002-2028-9855
  • Atanas Chonin Department of Diagnostic Imaging, Dental Allergology and Physiotherapy, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
  • Iliyana Stoeva Department of Diagnostic Imaging, Dental Allergology and Physiotherapy, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
  • Angelina Vlahova Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria https://orcid.org/0000-0002-4794-2324
  • Elena Vasileva Department of Prosthetic Dental Medicine, Faculty of Dental Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria https://orcid.org/0000-0002-2718-0094

DOI:

https://doi.org/10.3889/oamjms.2022.9960

Keywords:

Saliva, Isoprostanes, Base dental alloys

Abstract

BACKGROUND: Metal ions emitted from dental alloys may induce oxidative stress leading to numerous pathological changes. Lipid peroxidation may cause disturbance of structure and function of cell membranes, apoptosis, autophagy, and formation of potentially mutagenic compounds. Products of interaction between reactive oxygen species and biomolecules may be used for evaluation of oxidative stress level.

AIM: The aim of this study was to evaluate the influence of the prosthetic dental treatment with metal ceramic restorations on the level of oxidative stress in the oral cavity.

MATERIALS AND METHODS: Metal ceramic crowns with copings fabricated by direct metal laser sintering were produced for 35 patients. CoCr dental alloy EOS CobaltChrome SP2 (EOS) was used. Non-stimulated and stimulated saliva samples were collected from the patients before and after the prosthetic treatment. For evaluation of oxidative stress concentration of 8-isoPGF2-alpha was measured by liquid chromatography tandem mass spectrometry. For statistical processing, non-parametric Wilcoxon signed-rank test and Mann–Whitney test were applied.

RESULTS: The concentration of isoprostane 8-isoPGF2-alpha in non-stimulated saliva was lower 2 h after fixing the crowns compared to the initial level and statistically significant difference was observed. On the 7th day the concentration of isoprostanes remained significantly lower than the initial one. No significant differences were found in isoprostane concentration in stimulated saliva before and after prosthetic treatment.

CONCLUSION: Prosthetic dental treatment leads to decrease in oral oxidative stress.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Yang S, Lian G. ROS and diseases: Role in metabolism and energy supply. Mol Cell Biochem. 2020;467(1-2):1-12. https://doi.org/10.1007/s11010-019-03667-9 PMid:31813106 DOI: https://doi.org/10.1007/s11010-019-03667-9

Marrocco I, Altieri F, Peluso I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid Med Cell Longev. 2017;2017:6501046. https://doi.org/10.1155/2017/6501046 PMid:28698768 DOI: https://doi.org/10.1155/2017/6501046

Catalá A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids. 2009;157(1):1-11. https://doi.org/10.1016/j.chemphyslip.2008.09.004 PMid:18977338 DOI: https://doi.org/10.1016/j.chemphyslip.2008.09.004

Kesarwala AH, Krishna MC, Mitchell JB. Oxidative stress in oral diseases. Oral Dis. 2016;22(1):9-18. https://doi.org/10.1111/odi.12300 PMid:25417961 DOI: https://doi.org/10.1111/odi.12300

Avezov K, Reznick AZ, Aizenbud D. Oxidative stress in the oral cavity: Sources and pathological outcomes. Respir Physiol Neurobiol. 2015;209:91-4. https://doi.org/10.1016/j.resp.2014.10.007 PMid:25461624 DOI: https://doi.org/10.1016/j.resp.2014.10.007

Sardaro N, Vella FD, Incalza MA, Di Stasio D, Lucchese A, Contaldo M, et al. Oxidative stress and oral mucosal diseases: An overview. In Vivo. 2019;33(2):289-96. https://doi.org/10.21873/invivo.11474 PMid:30804105 DOI: https://doi.org/10.21873/invivo.11474

Caruso AA, Del Prete A, Lazzarino AI. Hydrogen peroxide and viral infections: A literature review with research hypothesis definition in relation to the current covid-19 pandemic. Med Hypotheses. 2020;144:109910. https://doi.org/10.1016/j.mehy.2020.109910 PMid:32505069 DOI: https://doi.org/10.1016/j.mehy.2020.109910

Aquino-Martinez R, Khosla S, Farr JN, Monroe DG. Periodontal disease and senescent cells: New players for an old oral health problem? Int J Mol Sci. 2020;21(20):7441. https://doi.org/10.3390/ijms21207441 PMid:33050175 DOI: https://doi.org/10.3390/ijms21207441

Bhagat S, Singh P, Parihar AS, Kaur G, Takkar H, Rela R. Assessment of levels of plasma oxidative stress in patient having aggressive periodontitis before and after full mouth disinfection. J Pharm Bioallied Sci. 2021;13(Suppl 1):S432-5. https://doi.org/10.4103/jpbs.JPBS_599_20 PMid:34447127 DOI: https://doi.org/10.4103/jpbs.JPBS_599_20

Sczepanik FS, Grossi ML, Casati M, Goldberg M, Glogauer M, Fine N, et al. Periodontitis is an inflammatory disease of oxidative stress: We should treat it that way. Periodontol 2000. 2020;84(1):45-68. https://doi.org/10.1111/prd.12342 PMid:32844417 DOI: https://doi.org/10.1111/prd.12342

Dursun E, Akalin FA, Genc T, Cinar N, Erel O, Yildiz BO. Oxidative stress and periodontal disease in obesity. Medicine (Baltimore). 2016;95(12):e3136. https://doi.org/10.1097/MD.0000000000003136 PMid:27015191 DOI: https://doi.org/10.1097/MD.0000000000003136

Fang H, Yang K, Tang P, Zhao N, Ma R, Luo X, et al. Glycosylation end products mediate damage and apoptosis of periodontal ligament stem cells induced by the JNK-mitochondrial pathway. Aging (Albany NY). 2020;12(13):12850-68. https://doi.org/10.18632/aging.103304 PMid:32611833 DOI: https://doi.org/10.18632/aging.103304

Zieniewska I, Maciejczyk M, Zalewska A. The effect of selected dental materials used in conservative dentistry, endodontics, surgery, and orthodontics as well as during the periodontal treatment on the redox balance in the oral cavity. Int J Mol Sci. 2020;21(24):9684. https://doi.org/10.3390/ijms21249684 PMid:33353105 DOI: https://doi.org/10.3390/ijms21249684

Srimaneepong V, Rokaya D, Thunyakitpisal P, Qin J, Saengkiettiyut K. Corrosion resistance of graphene oxide/ silver coatings on Ni-Ti alloy and expression of IL-6 and IL-8 in human oral fibroblasts. Sci Rep. 2020;10(1):3247. https://doi.org/10.1038/s41598-020-60070-x PMid:32094428 DOI: https://doi.org/10.1038/s41598-020-60070-x

Rokaya D, Srimaneepong V, Qin J, Siraleartmukul K, Siriwongrungson V. Graphene oxide/silver nanoparticle coating produced by electrophoretic deposition improved the mechanical and tribological properties of NiTi alloy for biomedical applications. J Nanosci Nanotechnol. 2019;19(7):3804-10. https://doi.org/10.1166/jnn.2019.16327 PMid:30764937 DOI: https://doi.org/10.1166/jnn.2019.16327

Chen B, Xia G, Cao XM, Wang J, Xu BY, Huang P, et al. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys. Int J Oral Sci. 2013;5(1):44-8. https://doi.org/10.1038/ijos.2013.13 PMid:23579466 DOI: https://doi.org/10.1038/ijos.2013.13

Jafari K, Rahimzadeh S, Hekmatfar S. Nickel ion release from dental alloys in two different mouthwashes. J Dent Res Dent Clin Dent Prospects. 2019;13(1):19-23. https://doi.org/10.15171/joddd.2019.003 PMid:31217914 DOI: https://doi.org/10.15171/joddd.2019.003

Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283(2-3):65-87. https://doi.org/10.1016/j.tox.2011.03.001 PMid:21414382 DOI: https://doi.org/10.1016/j.tox.2011.03.001

Chen H, Wu X, Bi R, Li L, Gao M, Li D, et al. Mechanisms of Cr (VI) toxicity to fish in aquatic environment: A review. Ying Yong Sheng Tai Xue Bao. 2015;26(10):3226-34. PMid:26995935

Battaglia V, Compagnone A, Bandino A, Bragadin M, Rossi CA, Zanetti F, et al. Cobalt induces oxidative stress in isolated liver mitochondria responsible for permeability transition and intrinsic apoptosis in hepatocyte primary cultures. Int J Biochem Cell Biol. 2009;41(3):586-94. https://doi.org/10.1016/j.biocel.2008.07.012 PMid:18708157 DOI: https://doi.org/10.1016/j.biocel.2008.07.012

Permenter MG, Dennis WE, Sutto TE, Jackson DA, Lewis JA, Stallings JD. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines. PLoS One. 2013;8(12):e83751. https://doi.org/10.1371/journal.pone.0083751 PMid:24386269 DOI: https://doi.org/10.1371/journal.pone.0083751

Bernhardt A, Bacova J, Gbureck U, Gelinsky M. Influence of Cu(2+) on osteoclast formation and activity in vitro. Int J Mol Sci. 2021;22(5):2451. https://doi.org/10.3390/ijms22052451 PMid:33671069 DOI: https://doi.org/10.3390/ijms22052451

Spalj S, Zrinski MM, Spalj VT, Buljan ZI. In-vitro assessment of oxidative stress generated by orthodontic archwires. Am J Orthod Dentofacial Orthop. 2012;141(5):583-9. https://doi.org/10.1016/j.ajodo.2011.11.020 PMid:22554752 DOI: https://doi.org/10.1016/j.ajodo.2011.11.020

Bandeira AM, Martinez EF, Demasi AP. Evaluation of toxicity and response to oxidative stress generated by orthodontic bands in human gingival fibroblasts. Angle Orthod. 2020;90(2):285-90. https://doi.org/10.2319/110717-761.1 PMid:31804141 DOI: https://doi.org/10.2319/110717-761.1

Milne GL, Dai Q, Roberts LJ 2nd. The isoprostanes 25 years later. Biochim Biophys Acta. 2015;1851(4):433-45. https://doi.org/10.1016/j.bbalip.2014.10.007 PMid:25449649 DOI: https://doi.org/10.1016/j.bbalip.2014.10.007

Tomov D, Bocheva G, Divarova V, Kasabova L, Svinarov D. Phase separation liquid-liquid extraction for the quantification of 8-iso-prostaglandin F2 Alpha in human plasma by LC-MS/ MS. J Med Biochem. 2021;40(1):10-6. https://doi.org/10.5937/jomb0-24746 PMid:33584135 DOI: https://doi.org/10.5937/jomb0-24746

Milne GL, Musiek ES, Morrow JD. F2 Isoprostanes as markers of oxidative stress in vivo: An overview. Biomarkers. 2005;10(Suppl 1):10-23. https://doi.org/10.1080/13547500500216546 PMid:16298907 DOI: https://doi.org/10.1080/13547500500216546

Senghore T, Li YF, Sung FC, Tsai MH, Hua CH, Liu CS, et al. Biomarkers of oxidative stress associated with the risk of potentially malignant oral disorders. Anticancer Res. 2018;38(8):4661-6. https://doi.org/10.21873/anticanres.12771 PMid:30061233 DOI: https://doi.org/10.21873/anticanres.12771

Singer RE, Moss K, Kim SJ, Beck JD, Offenbacher S. Oxidative stress and IgG antibody modify periodontitis-CRP association. J Dent Res. 2015;94(12):1698-705. DOI: https://doi.org/10.1177/0022034515602693

Koregol AC, Kalburgi NB, Sadasivan SK, Warad S, Wagh AK, Thomas T, et al. 8-Isoprostane in chronic periodontitis and Type II diabetes: Exploring the link. J Dent Res Dent Clin Dent Prospects. 2018;12(4):252-7. https://doi.org/10.15171/joddd.2018.039 PMid:30774790 DOI: https://doi.org/10.15171/joddd.2018.039

Tomova Z, Tomov D, Vlahova A, Chaova-Gizdakova V, Yoanidu L, Svinarov D. Development and validation of an LC-MS/MS method for determination of 8-iso-prostaglandin F2 alpha in human saliva. J Med Biochem. 2022;41:1-9. https://doi.org/10.5937/jomb0-33556 DOI: https://doi.org/10.5937/jomb0-33556

Milne GL, Yin H, Morrow JD. Human biochemistry of the isoprostane pathway. J Biol Chem. 2008;283(23):15533-7. https://doi.org/10.1074/jbc.R700047200 PMid:18285331 DOI: https://doi.org/10.1074/jbc.R700047200

Kovač V, Poljšak B, Primožič J, Jamnik P. Are metal ions that make up orthodontic alloys cytotoxic, and do they induce oxidative stress in a yeast cell model? Int J Mol Sci. 2020;21(21):7993. https://doi.org/10.3390/ijms21217993 PMid:33121155 DOI: https://doi.org/10.3390/ijms21217993

McGinley EL, Moran GP, Fleming GJ. Biocompatibility effects of indirect exposure of base-metal dental casting alloys to a human-derived three-dimensional oral mucosal model. J Dent. 2013;41(11):1091-100. https://doi.org/10.1016/j.jdent.2013.08.010 PMid:23954576 DOI: https://doi.org/10.1016/j.jdent.2013.08.010

Li L, Zhang YL, Liu XY, Meng X, Zhao RQ, Ou LL, et al. Periodontitis exacerbates and promotes the progression of chronic kidney disease through oral flora, cytokines, and oxidative stress. Front Microbiol. 2021;12:656372. https://doi.org/10.3389/fmicb.2021.656372 PMid:34211440 DOI: https://doi.org/10.3389/fmicb.2021.656372

Janšáková K, Escudier M, Tóthová Ľ, Proctor G. Salivary changes in oxidative stress related to inflammation in oral and gastrointestinal diseases. Oral Dis. 2021;27(2):280-9. https://doi.org/10.1111/odi.13537 PMid:32643850 DOI: https://doi.org/10.1111/odi.13537

Ekuni D, Tomofuji T, Tamaki N, Sanbe T, Azuma T, Yamanaka R, et al. Mechanical stimulation of gingiva reduces plasma 8-OHdG level in rat periodontitis. Arch Oral Biol. 2008;53(4):324-9. https://doi.org/10.1016/j.archoralbio.2007.10.005 PMid:18031711 DOI: https://doi.org/10.1016/j.archoralbio.2007.10.005

Kamodyová N, Tóthová L, Celec P. Salivary markers of oxidative stress and antioxidant status: Influence of external factors. Dis Markers. 2013;34(5):313-21. https://doi.org/10.3233/DMA-130975 PMid:23478271 DOI: https://doi.org/10.1155/2013/341302

Sazanov AA, Kiselyova E V, Zakharenko AA, Romanov MN, Zaraysky MI. Plasma and saliva miR-21 expression in colorectal cancer patients. J Appl Genet. 2017;58(2):231-7. https://doi.org/10.1007/s13353-016-0379-9 PMid:27910062 DOI: https://doi.org/10.1007/s13353-016-0379-9

Lee LT, Wong YK, Hsiao HY, Wang YW, Chan MY, Chang KW. Evaluation of saliva and plasma cytokine biomarkers in patients with oral squamous cell carcinoma. Int J Oral Maxillofac Surg. 2018;47(6):699-707. https://doi.org/10.1016/j.ijom.2017.09.016 PMid:29174861 DOI: https://doi.org/10.1016/j.ijom.2017.09.016

Zygula A, Kosinski P, Wroczynski P, Makarewicz-Wujec M, Pietrzak B, Wielgos M, et al. Oxidative stress markers differ in two placental dysfunction pathologies: Pregnancy-induced hypertension and intrauterine growth restriction. Oxid Med Cell Longev. 2020;2020:1323891. https://doi.org/10.1155/2020/1323891 PMid:32685085 DOI: https://doi.org/10.1155/2020/1323891

Downloads

Published

2022-06-18

How to Cite

1.
Tomova Z, Tomov D, Chonin A, Stoeva I, Vlahova A, Vasileva E. Oxidative Stress in the Oral Cavity before and After Prosthetic Treatment. Open Access Maced J Med Sci [Internet]. 2022 Jun. 18 [cited 2024 Apr. 20];10(D):311-6. Available from: https://oamjms.eu/index.php/mjms/article/view/9960

Most read articles by the same author(s)