Vitamin D Target Genes in Dental Health

Authors

  • Ashwini Tumkur Shivakumar Department of Conservative Dentistry and Endodontics, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
  • Sowmya Halasabalu Kalgeri Department of Conservative Dentistry and Endodontics, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
  • Prasanna K. Santhekadur Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India

DOI:

https://doi.org/10.3889/oamjms.2022.9962

Keywords:

Dental caries, Mineralization, vitamin D, vitamin D receptors

Abstract

INTRODUCTION: Vitamin D is an important molecule which plays pivotal role in overall human health and metabolism. This vitamin acts as both vitamin as well as hormone, and thus, dual nature of this vitamin makes it as one of the important chemicals required for the overall health, harmonious growth, and development. Recently, this vitamin is gaining large attention in dentistry, and it is becoming master regulator of dental health. It is well studied that vitamin D plays major role in calcium absorption for bone and teeth mineralisation, it acts as odontogenic inducer of differentiation of human dental pulp cells and in tooth development.

STUDY SELECTION, DATA, AND SOURCES: Vitamin D regulates various signalling pathways in dental network and plays a beneficial role. Synthesis of vitamin D takes place in multiple steps in human body. The natural form of vitamin D is fat soluble in nature and is produced in the skin from 7-dehydrocholesterol molecules. Natural Sunlight through its ultraviolet B (UVB) energy converts the precursor7-dehydrocholesterol molecules to vitamin D3. Advanced and unhealthy lifestyle of modern times has led to the deficiency of vitamin D and metabolic syndrome.

CONCLUSIONS: Deficiency of vitamin D also leads to various dental problems including dental caries, gingivitis, and periodontal disease. In this short review, we are discussing the role of vitamin D and importance of its target genes in dental health.

CLINICAL RELEVANCE: Vitamin D has a major role in managing the oral health this article updates the clinician with the different genes which are responsible for the regulation of vitamin D in different tissues.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Dugmore CR, Rock WP. A multifactorial analysis of factors associated with dental erosion. Br Dent J. 2004;196(5):283-6. https://doi.org/10.1038/sj.bdj.4811041 PMid:15017418

Botelho J, Machado V, Proença L, Delgado AS, Mendes JJ. Vitamin D deficiency and oral health: A comprehensive review. Nutrients. 2020;12(5):1471. https://doi.org/10.3390/nu12051471 PMid:32438644

Piekoszewska-Ziętek P, Turska-Szybka A, Olczak-Kowalczyk D. Single nucleotide polymorphism in the aetiology of caries: Systematic literature review. Caries Res. 2017;51(4):425-35. https://doi.org/10.1159/000476075 PMid:28668961

Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F. Oral microbiomes: More and more importance in oral cavity and whole body. Protein Cell. 2018;9(5):488-500. https://doi.org/10.1007/s13238-018-0548-1 PMid:29736705

White JH. Vitamin D and human health: More than just bone. Nat Rev Endocrinol. 2013;9(10):623. https://doi.org/10.1038/nrendo.2013.75-c1 PMid:23959369

Mostafa WZ, Hegazy RA. Vitamin D and the skin: Focus on a complex relationship: A review. J Adv Res. 2015;6(6):793-804. https://doi.org/10.1016/j.jare.2014.01.011 PMid:26644915

Bornstein SR, Ehrhart-Bornstein M, Wong ML, Licinio J. Is the worldwide epidemic of obesity a communicable feature of globalization? Exp Clin Endocrinol Diabetes. 2008;116(1):S30-2. https://doi.org/10.1055/s-2008-1081485 PMid:18777450

Wieder-Huszla S, Jurczak A, Szkup M, Barczak K, Dołęgowska B, Schneider-Matyka D, et al. Relationships between vitamin D3 and metabolic syndrome. Int J Environ Res Public Health. 2019;16(2):175. https://doi.org/10.3390/ijerph16020175 PMid:30634516

Kashani HH, Hosseini ES, Nikzad H, Soleimani A, Soleimani M, Tamadon MR, et al. The effects of vitamin D supplementation on signalling pathway of inflammation and oxidative stress in diabetic haemodialysis: A randomized, double-blind, placebocontrolled trial. Front Pharmacol. 2018;9:50. https://doi.org/10.3389/fphar.2018.00050 PMid:29456507

Zierold C, DeLuca HF. Additional protein factors play a role in the formation of VDR/RXR complexes on vitamin D response elements. J Cell Biochem. 1998;71(4):515-23. https://doi.org/10.1002/(sici)1097-4644(19981215)71:4<515:aid-jcb6>3.0.co;2-c PMid:9827697

Woo SM, Lim HS, Jeong KY, Kim SM, Kim WJ, Jung JY. Vitamin D promotes odontogenic differentiation of human dental pulp cells via ERK activation. Mol Cells. 2015;38(7):604-9. https://doi.org/10.14348/molcells.2015.2318 PMid:26062551

Khurshid Z, Naseem M, Asiri FY, Mali M, Khan RS, Sahibzada HA, et al. Significance and diagnostic role of antimicrobial cathelicidins (LL-37) peptides in oral health. Biomolecules. 2017;7(4):80. https://doi.org/10.3390/biom7040080 PMid:29206168

Hata TR, Kotol P, Jackson M, Nguyen M, Paik A, Udall D, et al. Administration of oral vitamin D induces cathelicidins production in atopic individuals. J Allergy Clin Immunol. 2008;122(4):829-31. https://doi.org/10.1016/j.jaci.2008.08.020 PMid:19014773

Carlberg C, Molnár F. Vitamin D receptor signalling and its therapeutic implications: Genome-wide and structural view. Can J Physiol Pharmacol. 2015;93(5):311-8. https://doi.org/10.1139/cjpp-2014-0383 PMid:25741777

Marcinkowska E. The vitamin D System in humans and mice: Similar but not the same. Reports. 2020;3:1-9. https://doi.org/10.3390/reports3010001

Orlov I, Rochel N, Moras D, Klaholza BP. Structure of the full human RXR/VDR nuclear receptor heterodimer complex with its DR3 target DNA. EMBO J. 2012;31(2):291-300. https://doi.org/10.1038/emboj.2011.445 PMid:22179700

von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C. Vitamin D controls T cell antigen receptor signalling and activation of human T cells. Nat Immunol. 2010;11(4):344-9. https://doi.org/10.1038/ni.1851 PMid:20208539

Zella LA, Kim S, Shevde NK, Pike JW. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Mol Endocrinol. 2006;20(6):1231-47. https://doi.org/10.1210/me.2006-0015 PMid:16497728

Sasaki S, Shimokawa H. The amelogenin gene. Int J Dev Biol. 1995;39(1):127-33. PMid:7626398

Bansal AK, Shetty DC, Bindal R, Pathak A. Amelogenin: A novel protein with diverse applications in genetic and molecular profiling. J Oral Maxillofac Pathol. 2012;16(3):395-9. https://doi.org/10.4103/0973-029x.102495 PMid:23248473

Papagerakis P, Hotton D, Lezot F, Brookes S, Bonass W, Robinson C, et al. Evidence for regulation of amelogenin gene expression by 1,25-dihydroxyvitamin D3 in vivo. J Cell Biochem. 1999;76(2):194-205. https://doi.org/10.1002/(sici)1097-4644(20000201)76:2<194:aid-jcb4>3.0.co;2-u PMid:10618637

Crawford PJ, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis. 2007;2:17. https://doi.org/10.1186/1750-1172-2-17

Mårdh CK, Bäckman B, Holmgren G, Hu JC, Simmer JP, Forsman-Semb K. A nonsense mutation in the enamelin gene causes local hypoplastic autosomal dominant amelogenesis imperfecta (AIH2). Hum Mol Genet. 2002;11(9):1069-74. https://doi.org/10.1093/hmg/11.9.1069

Espírito Santo AR, Peres Line SR. The enamel organic matrix: Structureand function. Braz J Oral Sci. 2005;4(13):716-24. https://doi.org/10.20396/bjos.v4i13.8641819

Hart TC, Hart PS, Gorry MC, Michalec MD, Ryu OH, Uygur C, et al. Novel ENAM mutation responsible for autosomal recessive amelogenesis imperfecta and localised enamel defects. J Med Genet. 2003;40(12):900-6. https://doi.org/10.1136/jmg.40.12.900 PMid:14684688

Suzuki S, Haruyama N, Nishimura F, Kulkarni AB. Dentin sialophosphoprotein and dentin matrix protein 1: Two highly phosphorylated proteins in mineralized tissues. Arch Oral Biol. 2012;57(9):1165-75. https://doi.org/10.1016/j.archoralbio.2012.03.005 PMid:22534175

Prasad M, Butler WT, Qin C. Dentin sialophosphoprotein in biomineralization. Connect Tissue Res. 2010;51(5):404-17. https://doi.org/10.3109/03008200903329789 PMid:20367116

von Marschall Z, Fisher LW. Dentin sialophosphoprotein (DSPP) is cleaved into its two natural dentin matrix products by three isoforms of bone morphogenetic protein-1 (BMP1). Matrix Biol. 2010;29(4):295-303. https://doi.org/10.1016/j.matbio.2010.01.002 PMid:20079836

Nociti FH Jr., Foster BL, Tran AB, Dunn D, Presland RB, Wang L, et al. Vitamin D represses dentin matrix protein 1 in cementoblasts and osteocytes. J Dent Res. 2014;93(2):148-54. https://doi.org/10.1177/0022034513516344 PMid:24334408

Bellahcène A, Castronovo V, Ogbureke KU, Fisher LW, Fedarko NS. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): Multifunctional proteins in cancer. Nat Rev Cancer. 2008;8(3):212-26. https://doi.org/10.1038/nrc2345 PMid:18292776

Beniash E, Deshpande AS, Fang PA, Lieb NS, Zhang X, Sfeir CS. Possible role of DMP1 in dentin mineralization. J Struct Biol. 2011;174(1):100-6. https://doi.org/10.1016/j.jsb.2010.11.013 PMid:21081166

Wu H, Teng PN, Jayaraman T, Onishi S, Li J, Bannon L, et al. Dentin matrix protein 1 (DMP1) signals via cell surface integrin. J Biol Chem. 2011;286(34):29462-9. https://doi.org/10.1074/jbc.M110.194746 PMid:21642437

Hans M, Madaan HV. Epithelial antimicrobial peptides: Guardian of the oral cavity. Int J Pept. 2014;2014:370297. https://doi.org/10.1155/2014/370297 PMid:25435884

Aranow C. Vitamin D and the immune system. J Investig Med. 2011;59(6):881-6. https://doi.org/10.2310/JIM.0b013e31821b8755 PMid:21527855

Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A, Horbańczuk J, et al. Cathelicidins: Family of antimicrobial peptides. A review. Mol Biol Rep. 2012;39(12):10957-70. https://doi.org/10.1007/s11033-012-1997-x PMid:23065264

Kuroda K, Okumura K, Isogai H, Isogai E. The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs. Front Oncol. 2015;5:144. https://doi.org/10.3389/fonc.2015.00144 PMid:26175965

Ikuta T, Inagaki Y, Tanaka K, Saito T, Nakajima Y, Bando M, et al. Gene polymorphism of β-defensin-1 is associated with susceptibility to periodontitis in Japanese. Odontology. 2015;103(1):66-74. https://doi.org/10.1007/s10266-013-0139-9 PMid:24276427

Su D, Nie Y, Zhu A, Chen Z, Wu P, Zhang L, et al. Vitamin D signaling through induction of paneth cell defensins maintains gut microbiota and improves metabolic disorders and hepatic steatosis in animal models.Front Physiol. 2016;7:498. https://doi.org/10.3389/fphys.2016.00498 PMid:27895587

Stratmann U, Schaarschmidt K, Wiesmann HP, Plate U, Höhling HJ, Szuwart T. The mineralization of mantle dentine and of circumpulpal dentine in the rat: An ultrastructural and element-analytical study. Anat Embryol (Berl). 1997;195(3):289-97. https://doi.org/10.1007/s004290050048 PMid:9084827

Witkop CJ, Sauk JJ. Heritable defects of enamel. In: Stewart RE, Prescott GH, editors. Oral Facial Genetics. St. Louis, MO: Mosby; 1976. p. 151-226.

Golub EE. Role of matrix vesicles in biomineralization. Biochim Biophys Acta. 2009;1790(12):1592-8. https://doi.org/10.1016/j.bbagen.2009.09.006 PMid:19786074

Gibson CW, Snead ML. Enamel fabrication: The story of amelogenesis. In: McCauley LK, Somerman MJ, editors. Mineralized Tissues in Oral and Craniofacial Science: Biological Principles and Clinical Correlates. 1st ed. Ames, IA: John Wiley, Sons; 2012. p. 153-61.

Hu JC, Simmer JP. Developmental biology and genetics of dental malformations. Orthod Craniofac Res. 2007;10(2):45-52. https://doi.org/10.1111/j.1601-6343.2007.00384.x PMid:17552940

Staines KA, MacRae VE, Farquharson C. The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J Endocrinol. 2012;214(3):241-55. https://doi.org/10.1530/JOE-12-0143 PMid:22700194

Qin C, Baba O, Butler W. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med. 2004;15(3):126-36. https://doi.org/10.1177/154411130401500302 PMid:15187031

Fisher LW, Fedarko NS. Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res. 2003;44(Suppl 1):33-40. PMid:12952171

Goldberg M, Kulkarni AB, Young M, Boskey A. Dentin: Structure, composition and mineralization. Front Biosci (Elite Ed). 2011;3:711-35. https://doi.org/10.2741/e281 PMid:21196346

Takano Y, Sakai H, Baba O, Terashima T. Differential involvement of matrix vesicles during the initial and appositional mineralization processes in bone, dentin, and cementum. Bone. 2000;26(4):333-9. https://doi.org/10.1016/S8756-3282(00)00243-X PMid:10719275

Ahmad M, Iseki H, Abduweli D, Baba O, Tabata MJ, Takano Y. Ultrastructural and histochemical evaluation of appositional mineralization of circumpulpal dentin at the crown-and rootanalog portions of rat incisors. J Electron Microsc (Tokyo). 2011;60(1):79-87. https://doi.org/10.1093/jmicro/dfq075 PMid:21030417

Kim JW, Simmer JP. Hereditary dentin defects. J Dent Res. 2007;86(5):392-9. https://doi.org/10.1177/154405910708600502 PMid:17452557

MacDougall M, Dong J, Acevedo A. Molecular basis of human dentin diseases. Am J Med Genet A. 2006;140(23):2536-46. https://doi.org/10.1002/ajmg.a.31359 PMid:16955410

Vital SO, Gaucher C, Bardet C, Rowe PS, George A, Linglart A, et al. Tooth dentin defects reflect genetic disorders affecting bone mineralization. Bone. 2012;50(4):989-97. https://doi.org/10.1016/j.bone.2012.01.010 PMid:22296718

Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, et al. Molecular mechanisms of vitamin D action. Calcif Tissue Int. 2013;92(2):77-98. https://doi.org/10.1007/s00223-012-9619-0 PMid:22782502

Pike JW, Meyer MB, Lee SM. The vitamin D receptor: Biochemical, molecular, biological, and genomic era investigations. In: Feldman D, Pike JW, Adams JS, editors. Vitamin D. 3rd ed. New York, NY: Academic Press; 2011. 97-136. https://doi.org/10.1016/B978-0-12-381978-9.10007-1

Haussler MR, Jurutka PW, Mizwicki M, Norman AW. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2 vitamin D3: Genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab. 2011;25(4):543-59. https://doi.org/10.1016/j.beem.2011.05.010 PMid:21872797

Berdal A, Hotton D, Pike JW, Mathieu H, Dupret JM. Cell-and stage-specific expression of vitamin D receptor and calbindin genes in rat incisor: Regulation by 1,25-dihydroxyvitamin D3. Dev Biol. 1993;155(1):172-9.https://doi.org/10.1006/dbio.1993.1016 PMid:8380146

Berdal A, Nanci A, Smith CE, Ahluwalia JP, Thomasset M, Cuisinier-Gleizes P, et al. Differential expression of calbindin-D

kDa in rat incisor ameloblasts throughout enamel development. Anat Rec. 1991;230(2):149-63. https://doi.org/10.1002/ar.1092300202 PMid:1867392

Berdal A, Molla M, Descroix V. Vitamin D and oral health. In: Feldman D, Pike JW, Adams JS, editors. Vitamin D. 3rd ed. New York, NY: Academic Press; 2011. p. 521-32.

Mesbah M, Nemere I, Papagerakis P, Nefussi JR, Orestes-Cardoso S, Nessmann C, et al. Expression of a 1,25-dihydroxyvitamin D3 membrane-associated rapid-response steroid binding protein during human tooth and bone development and biomineralization. J Bone Miner Res. 2002;17(9):1588-96. https://doi.org/10.1359/jbmr.2002.17.9.1588 PMid:12211428

Downloads

Published

2022-09-02

How to Cite

1.
Shivakumar AT, Kalgeri SH, Santhekadur PK. Vitamin D Target Genes in Dental Health. Open Access Maced J Med Sci [Internet]. 2022 Sep. 2 [cited 2024 Mar. 28];10(F):571-7. Available from: https://oamjms.eu/index.php/mjms/article/view/9962

Issue

Section

Narrative Review Article

Categories