Health Risk Assessment on Exposure to PM2.5-bound PAHs from an Urban-industrial Area in Rayong City, Thailand

Authors

  • Sawaeng Kawichai Research Institute for Health Science, Chiang Mai University, Chiang Mai, Thailand
  • Susira Bootdee Chemical Industrial Process and Environment Program, Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok (Rayong campus), Rayong, Thailand

DOI:

https://doi.org/10.3889/oamjms.2022.9977

Keywords:

Fine particles (PM2.5), Polycyclic aromatic hydrocarbons, Health risk assessment, The incremental lifetime cancer risk

Abstract

BACKGROUND: A city's industrial area's air quality has become a major priority. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) are one of the most common pollutants in urban-industrial area, and can be linked to health problems.

AIM: This study aims to 1) investigate PM2.5 and PAHs emitted from roadside area (RS) and industrial estate (IE) in Rayong city 2) assess the inhalation of PM2.5 and PAHs on the human health of the age group.

METHODS: PM2.5-bound PAHs were investigated and thier carcinogenic risk was evalued in this study. PM2.5 samples were collected on quartz filters contained in a mini-volume air sampler and analyzed for PAHs by GC-MS.

RESULTS: The average PM2.5 concentrations at RS and IE were 43.3±26.8 and 40.4±21.7 µg/m3, while the values of total PAHs in both sites were 1.68±1.53 and 1.34±1.22 ng/m3, respectively. However, it was found that the PM2.5 and PAHs values were not significantly different (p>0.05). The results revealed that the individual lifetime cancer risk (Ric) of PM2.5 values for children and adults at both sites indicated acceptable cancer risk (10-6 to10-4). According to the incremental lifetime cancer risk (ILCR) values of PAHs for different age groups, exposure to PAHs in PM2.5 through the inhalation pathway was a negligible (<10-6).

CONCLUSION: As a result, the PM2.5 concentrations have substantial implications for Rayong city’s environmental management and protection, relating to car emissions and coal combustion.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

World Health Organization. Air Quality Guidelines for Europe. 2nd ed. Geneva: WHO Regional Publications; 2000. Available from: https://www.apps.who.int/iris/bitstream/handle/10665/107335/9789289013581-eng.pdf?sequence=1&isAllowed=y [Last accessed on 2020 Dec 16].

Mesquita SR, Drooge BL, Reche C, Guimarães L, Grimalt JO, Barata C, et al. Toxic assessment of urban atmospheric particlebound PAHs: Relevance of composition and particle size in Barcelona (Spain). Environ. Pollut. 2014;184:555-62. https://doi.org/10.1016/j.envpol.2013.09.034 PMid:24184377 DOI: https://doi.org/10.1016/j.envpol.2013.09.034

Li Y, Liu X, Liu M, Li X, Meng F, Wang J, et al. Investigation on atmospheric PM2.5-borne PAHs in Eastern cities of China: Concentration, source diagnosis and health risk assessment. Environ Sci Processes Impacts. 2016;5:529-640. DOI: https://doi.org/10.1039/C6EM00012F

Liang B, Li XL, Ma K, Liang SX. Pollution characteristics of metal pollutants in PM2.5 and comparison of risk on human health in heating and non-healing seasons in Baoding, China. Ecotoxicol Environ Saf. 2019;170:166-71. https://doi.org/10.1016/j.ecoenv.2018.11.075 PMid:30529615 DOI: https://doi.org/10.1016/j.ecoenv.2018.11.075

Zhang T, Chen Y, Xu X. Health risk assessment of PM2.5-bound components in Beijing, China during 2013-2015. Aerosol Air Qual Res. 2020;20(9):1938-49. DOI: https://doi.org/10.4209/aaqr.2020.03.0108

Chen C, Xia Z, Wu M, Zhang Q, Wang T, Wang L, et al. Concentrations, source identification, and lung cancer risk associated with springtime PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Nanjing, China. Arc Environ Contam Toxicol. 2017;73(3):391-400. https://doi.org/10.1007/s00244-017-0435-4 PMid:28735361 DOI: https://doi.org/10.1007/s00244-017-0435-4

Mo Z, Wang Z, Mao G, Pan X, Wu L, Xu P, et al. Characterization and health risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons in 5 urban cities of Zhejiang province, China. Sci Rep. 2019;9(1):7296. https://doi.org/10.1038/s41598-019-43557-0 PMid:31086237 DOI: https://doi.org/10.1038/s41598-019-43557-0

Hassanvand MS, Naddafi K, Faridi S, Nabizadeh R, Sowlat MH, Momeniha F, et al. Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory. Sci Total Environ. 2015;527-8:100-10. https://doi.org/10.1016/j.scitotenv.2015.05.001 PMid:25958359 DOI: https://doi.org/10.1016/j.scitotenv.2015.05.001

Chowdhury PH, Honda A, Ito S, Okano H, Onishi T, Higashihara M, et al. Effect of ambient PM2.5 collected using cyclonic separator from Asian cities on human airway epithelial cells. Aerosol Air Qual Res. 2019;19(8):1808-19. https://doi.org/10.4209/aaqr.2019.01.0016 DOI: https://doi.org/10.4209/aaqr.2019.01.0016

Kermani M, Jafari AJ, Gholami M, Shahsavani A, Taghizadeh F, Arfaeinia H. Ambient air PM2.5-bound PAHs in low traffic, high traffic, and industrial areas along Tehran, Iran. Hum Ecol Risk Assess. 2019;27(1):134-51. https://doi.org/10.1080/10807039.2 019.1695194 DOI: https://doi.org/10.1080/10807039.2019.1695194

Wilhelm M, Ghosh JK, Su J, Cockburn M, Jerrett M, Ritz B. Traffic-related air toxics and preterm birth: A population-based case-control study in los angeles country, California. Environ Health. 2011;10:89. https://doi.org/10.1186/1476-069X-10-89 PMid:21981989 DOI: https://doi.org/10.1186/1476-069X-10-89

Department of Industrial Work (DIW). Data of Industry in Rayong City, Thailand. Thailand: Department of Industrial Work; 2019. Available from: https://www.reg.diw.go.th/executive/amp2.asp?amp=1&prov=21 [Last accessed on 2020 Dec 20].

Zhang R, Jing J, Tao J, Hsu SC, Wang G, Cao J, et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos Chem Phys. 2013;13(14):7053-74. https://doi.org/10.5194/acp-13-7053-2013 DOI: https://doi.org/10.5194/acp-13-7053-2013

Kawichai S, Prapamontol T, Chantara S, Kanyanee T, Wiriya W, Zhang YL. Seasonal variation and sources estimation of PM2.5-bound PAHs from the ambient air of Chiang Mai city: An all-yearround study in 2017. Chiang Mai J Sci. 2020;47(5):958-72.

Greene NA, Morris VR. Assessment of public health risk associated with atmospheric exposure to PM2.5 in Washington, DC, USA. Int J Environ Res Public Health. 2006;3(1):86-97. https://doi.org/10.3390/ijerph2006030010 PMid:16823080 DOI: https://doi.org/10.3390/ijerph2006030010

Bootdee S, Chantara S, Prapamontol T. Determination of PM2.5 and polycyclic aromatic hydrocarbons from incense burning emission at shrine for health risk assessment. Atmos Pollut Res. 2016;7(4):680-89. https://doi.org/10.1016/j.apr.2016.03.002 DOI: https://doi.org/10.1016/j.apr.2016.03.002

Morakinyo OM, Mukhola MS, Mokgobu MI. Concentration levels and carcinogenic and mutagenic risks of PM2.5-bound polycyclic aromatic hydrocarbons in an urban-industrial area in South Africa. Environ Geochem Health. 2019;42(7):2163-78. https://doi.org/10.1007/s10653-019-00493-2 PMid:31848784 DOI: https://doi.org/10.1007/s10653-019-00493-2

Nisbet IC, LaGoy PK. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol. 1992;16(3):290-300. https://doi.org/10.1016/0273-2300(92)90009-x PMid:1293646 DOI: https://doi.org/10.1016/0273-2300(92)90009-X

Durant JL, Lafleur AL, Buaby WF Jr., Donhoffner LL, Penman BW, Crespi CL. Mutagenicity of C24H14 PAH in human cells expressing CYP1A1. Mutat Res. 1999;446(1):1-14. https://doi.org/10.1016/s1383-5718(99)00135-7 PMid:10613181 DOI: https://doi.org/10.1016/S1383-5718(99)00135-7

Kongpran J, Kliengchuay W, Niampradit S, Sahanavin N, Siriratruengsuk W, Tantrakarnapa K. The health risks of airborne polycyclic aromatic hydrocarbons (PAHs): Upper North Thailand. Geohealth. 2021;5(4):e2020GH000352. https://doi.org/10.1029/2020GH000352 PMid:33855249 DOI: https://doi.org/10.1029/2020GH000352

Sarkar S, Khillare PS. Profile of PAHs in the inhalable particulate fraction: Source apportionment and associated health risks in a tropical megacity. Environ Monit Assess. 2013;185(2):1199-213. https://doi.org/10.1007/s10661-012-2626-9 PMid:22527461 DOI: https://doi.org/10.1007/s10661-012-2626-9

U.S. Environmental Protection Agency (U.S. EPA). Risk Assessment Guidance for Superfund. Vol. 1. Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals) EPA/540/R-92/003. Office of Research and Development 20460. Washington, DC: US Environmental Protection Agency; 2015. Available from: https://www.epa.gov/sites/default/files/2015-09/documents/contents_0.pdf [Last accessed on 2020 Dec 20].

U.S. Environmental Protection Agency (U.S. EPA). Exposure Factors Handbook: 2011 ed. National Center for Environmental Assessment. Washington, DC: U.S. Environmental Protection Agency; 2011. Available from: https://www.epa.gov/ncea/efh [Last accessed on 2020 Dec 20].

Yang Q, Chen H, Li B. Polycyclic aromatic hydrocarbons (PAHs) in indoor dusts of Guizhou, Southwest of China: Status, sources and potential human health risk. PLoS One. 2015;10(2):e0118141. https://doi.org/10.1371/journal.pone.0118141 PMid:25719362 DOI: https://doi.org/10.1371/journal.pone.0118141

Liu J, Zhang J, Zhan C, Liu H, Zhang L, Hu T, et al. Polycyclic aromatic hydrocarbons (PAHs) in urban street dust of Huanggang, Central China: Status, sources and human health risk assessment. Aerosol Air Qual Res. 2019;19(2):221-33. https://doi.org/10.4209/aaqr.2018.02.0048 DOI: https://doi.org/10.4209/aaqr.2018.02.0048

Fang B, Zhang L, Zeng H, Liu J, Yang Z, Wang H, et al. PM2.5-bound polycyclic aromatic hydrocarbons: Sources and health risk during non-heating and heating periods (Tangshan, China). Int J Environ Res Public Health. 2020;17(2):483. https://doi.org/10.3390/ijerph17020483 PMid:31940862 DOI: https://doi.org/10.3390/ijerph17020483

Lerda D. Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet; 2009. Available from: https://ec.europa.eu/jrc/sites/default/files/Factsheet%20PAH_0.pdf [Last accessed on 2021 Jan 02].

Thepnuan D, Chantara S. Characterization of PM2.5-bound polycyclic aromatic hydrocarbons in Chiang Mai, Thailand during biomass open burning period of 2016. Appl Environ Res. 2020;42(3):11-24. https://doi.org/10.35762/AER.2020.42.3.2 DOI: https://doi.org/10.35762/AER.2020.42.3.2

International Agency for Research on Cancer (IARC). Diesel and Gasoline Engine Exhausts and Some Nitroarenes. 1st ed. Geneva, Switzerland: International Agency for Research on Cancer; 2013. p. 1-703.

Tobiszewski M, Namiesnik J. PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut. 2012;162:110-9. https://doi.org/10.1016/j.envpol.2011.10.025 PMid:22243855 DOI: https://doi.org/10.1016/j.envpol.2011.10.025

Yunker MB, Macdonald RW, Vinggarzan R, Mitchell RH, Goyette D, Sylvestre S. PAHs in the fraser river basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem. 2002;33(4):489-515. https://doi.org/10.1016/S0146-6380(02)00002-5 DOI: https://doi.org/10.1016/S0146-6380(02)00002-5

Electricity Generating Authority of Thailand (EGAT). Coal-fired power plants in Thailand. Electricity Generating Authority of Thailand; 2021. Available from: https://www.egat.co.th/index.php?option=com_content&view=article&id=355&Itemid=116 [Last accessed on 2021 Aug 14].

Rolph G, Stein A, Stunder B. Real-time environmental applications and display system: Ready. Environ Model Softw. 2017;95:210-28. DOI: https://doi.org/10.1016/j.envsoft.2017.06.025

Bennett WD, Zeman KL, Kimi C. Variability of fine particle deposition in healthy adults: Effect of age and gender. Am J Respir Crit Care Med. 1996;153(5):1641-7. https://doi.org/10.1164/ajrccm.153.5.8630615 PMid:8630615 DOI: https://doi.org/10.1164/ajrccm.153.5.8630615

European Commission. Air Quality Standards. Belgium: European Commission; 2020. Available from: https://www.ec. europa.eu/environment/air/quality/standards.htm [Last accessed on 2021 Aug 14].

Taghvaee S, Sowlat MH, Hassanvand MS, Yunesian M, Naddafi K, Sioutas C. Source-specific lung cancer risk assessment of ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in central Tehran. Environ Int. 2018;120:321-32. https://doi.org/10.1016/j.envint.2018.08.003 PMid:30107293 DOI: https://doi.org/10.1016/j.envint.2018.08.003

Zhang G, Ma K, Sun L, Liu P, Yue Y. Seasonal pollution characteristics, source apportionment and health risks of PM2.5-bound polycyclic aromatic hydrocarbons in an industrial city in northwestern China. Hum Ecol Risk Assess. 2020;27(4):1054-71. https://doi.org/10.1080/10807039.2020.1799186 DOI: https://doi.org/10.1080/10807039.2020.1799186

Meza-Figueroa D, De la O-Villanueva M, De la Parra ML. Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmos Environ. 2007;41(2):276-88. DOI: https://doi.org/10.1016/j.atmosenv.2006.08.034

U.S. Environmental Protection Agency (U.S. EPA). (2005e). Guidance on Selecting Age Groups for Monitoring and Assessing Childhood Exposures to Environmental Contaminants (final EPA/630/P-03/003F). Washington, DC: U.S. Environmental Protection Agency, Risk Assessment Forum; 2005. Available from: http://www.epa.gov/raf/publications/guidance-onselecting-age-groups.htm [Last accessed on 2021 Aug 14].

Downloads

Published

2022-08-05

How to Cite

1.
Kawichai S, Bootdee S. Health Risk Assessment on Exposure to PM2.5-bound PAHs from an Urban-industrial Area in Rayong City, Thailand. Open Access Maced J Med Sci [Internet]. 2022 Aug. 5 [cited 2024 Nov. 21];10(E):1-10. Available from: https://oamjms.eu/index.php/mjms/article/view/9977

Issue

Section

Public Health Epidemiology

Categories