Improved Bone Formation in Osteoporotic Rabbits with the Bone Morphogenetic Protein-2 (rhBMP-2) Coated Titanium Screws Which Were Coated By Using Plasma Polymerization Technique

Authors

  • Salih Gulsen Baskent University Medical Faculty Hospital, Neurosurgery, Maresal Fevzi Cakmak cad.10. sok. No: 45, Ankara 06540
  • Dilek Cokeliler BaÅŸkent University, Biomedical Engineering Department, Ankara
  • Hilal Goktas Canakkale Onsekiz Mart University, Physics Department, Ankara
  • Aysu Kucukturhan BaÅŸkent University, Biomedical Engineering Department, Ankara
  • Bilgehan Ozcil BaÅŸkent University, Biomedical Engineering Department, Ankara
  • Hakan Caner Baskent University Medical Faculty Hospital, Neurosurgery, Maresal Fevzi Cakmak cad.10. sok. No: 45, Ankara 06540

DOI:

https://doi.org/10.3889/oamjms.2014.031

Keywords:

Bone morphogenic protein, screw, Titanium, osteoporosis.

Abstract

Delaying of bone fusion in osteoporotic patients underwent spinal stabilization surgery leads to screw loosening, and this causes pseudoarticulation, mobility and fibrosis at vertebral segments. To prevent these complications, the screws coated with recombinant bone morphogenetic protein-2 (rhBMP-2) could be used. To verify this hypothesis, we coated 5 Titanium screws with rhBMP-2 using plasma polymerization method, and also used 10 uncoated screws for making comparison between coated and uncoated screws in different groups. And 15 skeletally mature white New Zealand female rabbits were assigned into three different groups: Group 1(N = 5): No osteoporosis induction and insertion of uncoated Titanium screw into right sacrum of each rabbit in group 1; group 2 (N = 5): Osteoporosis induction and insertion of uncoated Titanium screw into right sacrum of each rabbit in group 2; group 3 (N = 5) rhBMP-2 coated Titanium screw inserted into right sacrum of each rabbit in group 3. In summary, using of these coated screws provides new bone formation, but causes less fibrosis and less inflammation than uncoated screws at the interface between the coated screw and bone. Then the plasma polymerization technique provides controlled releasing of rhBMP-2 from the screw to the bone tissue in osteoporotic rabbits.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Halvorson TL, Kelley LA, Thomas KE, Whitecloud TS, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine. 1994;19:2415–2420, DOI: https://doi.org/10.1097/00007632-199411000-00008

Hu SS. Internal fixation in the osteoporotic spine. Spine. 1997;22:43– 48. DOI: https://doi.org/10.1097/00007632-199712151-00008

Kiner DW, Wybo CD, Sterba W, et al. Biomechanical analysis of different techniques in revision spinal instrumentation. Spine. 2008; 33: 2618–2622. DOI: https://doi.org/10.1097/BRS.0b013e3181882cac

Daubs MD, Lenke LG, Cheh G, et al. Adult spinal deformity surgery. Spine. 2007; 32:2238–2244. DOI: https://doi.org/10.1097/BRS.0b013e31814cf24a

Emami A, Deviren V, Berven S, et al. Outcome and complications of long fusion to the sacrum in adult spinal deformity. Luque-Galveston, combined iliac and sacral screws, and sacral fixation. Spine. 2002; 27: 776–786. DOI: https://doi.org/10.1097/00007632-200204010-00017

Kim YJ, Bridwell KH, Lenke LG, et al. Pseudoarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum: prevalence and risk factor analysis of 144 cases. Spine. 2006; 31:2329–2336. DOI: https://doi.org/10.1097/01.brs.0000238968.82799.d9

Boden SD. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine. 2002; 27:26–31. DOI: https://doi.org/10.1097/00007632-200208151-00007

Wittenberg RH, Shea M, Swartz DE, et al. Importance of bone mineral density in instrumented spine fusions. Spine. 1991; 16:647–652. DOI: https://doi.org/10.1097/00007632-199106000-00009

Kalfas IH. Principles of bone healing. Neurosurg Focus. 2001; 15:4-10. DOI: https://doi.org/10.3171/foc.2001.10.4.2

Muschler GF, Lane JM, Dawson EG. The biology of spinal fusion, in Cotler JM, Cotler HP: Spinal Fusion Science and Technique. Berlin: Springer-Verlag, 1990: 9–21. DOI: https://doi.org/10.1007/978-1-4612-3272-8_2

Kaufman HH, Jones E. The principles of bony spinal fusion. Neurosurgery. 1989; 24:264–270. DOI: https://doi.org/10.1227/00006123-198902000-00018

David L, Feige JJ, Bailly S. Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev. 2009;20:203–212. DOI: https://doi.org/10.1016/j.cytogfr.2009.05.001

King GN, King N, Cruchley AT, Wozney JM, Hughes FJ. Recombinant human bone morphogenetic protein-2 promotes wound healing in rat periodontal fenestration defects. J Dent Res. 1997;76:1460- 1470. DOI: https://doi.org/10.1177/00220345970760080801

Shields LB, Raque GH, Glassman SD, et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine. 2006;31: 542-547. DOI: https://doi.org/10.1097/01.brs.0000201424.27509.72

Zellin G, Linde A. Importance of delivery systems for growth-stimulatory factors in combination with osteopromotive membranes. An experimental study using rhBMP-2 in rat mandibular defects. J Biomed Mater Res. 1997; 35:181-190. DOI: https://doi.org/10.1002/(SICI)1097-4636(199705)35:2<181::AID-JBM6>3.0.CO;2-J

McClellan JW, Mulconrey DS, Forbes RJ, Fullmer N. Vertebral bone resorption after transforaminal lumbar interbody fusion with bone morphogenetic protein (rhBMP-2). J Spinal Disord Tech. 2006;19: 483-486. DOI: https://doi.org/10.1097/01.bsd.0000211231.83716.4b

Kim J, Park Y, Tae G, Lee KB, Hwang CM, Hwang SJ, et al. Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments. J Biomed Mater Res. 2009;88:967-975. DOI: https://doi.org/10.1002/jbm.a.31947

Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, et al. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007; 28:1830-1837. DOI: https://doi.org/10.1016/j.biomaterials.2006.11.050

Lee TC, Ho JT, Hung KS, Chen WF, Chung YH, Yang YL. Bone morphogenetic protein gene therapy using a fibrin scaffold for a rabbit spinal-fusion experiment. Neurosurgery. 2006; 58:373-380. DOI: https://doi.org/10.1227/01.NEU.0000199725.03186.F6

Jeon O, Song SJ, Yang HS, Bhang SH, Kang SW, Sung MA, et al. Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein- 2 compared to short-term delivery. Biochem Biophys Res Commun. 2008; 369:774-780. DOI: https://doi.org/10.1016/j.bbrc.2008.02.099

Mummaneni PV, Pan J, Haid RW, Rodts GE. Contribution of recombinant human bone morphogenetic protein-2 to the rapid creation of interbody fusion when used in transforaminal lumbar interbody fusion: a preliminary report. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves. J Neurosurg Spine. 2004; 1:19-23. DOI: https://doi.org/10.3171/spi.2004.1.1.0019

Treves C1, Martinesi M, Stio M, Gutiérrez A, Jiménez JA, López MF. In vitro biocompatibility evaluation of surface-modified titanium alloys. J Biomed Mater Res. 2010;15:1623-1634.

Hanawa T. In vivo metallic biomaterials and surface modification. Elsevier Materials Science & Engineering. 1999; 267: 260–266. DOI: https://doi.org/10.1016/S0921-5093(99)00101-X

Cokeliler D, Goktas H, Tosun PD, Mutlu S, Infection Free Titanium Alloys By Stabile Thiol Based Nanocoating, Journal of Nanoscience and Nanotechnology. 2010; 10:2583-9. DOI: https://doi.org/10.1166/jnn.2010.1414

Santos Castañeda, Emilio Calvo, Raquel Largo, Rocío González-González, Concepción de la Piedra, Manuel Díaz-Curiel, Gabriel Herrero-Beaumont. Characterization of a new experimental model of osteoporosis in rabbits. J Bone Miner Metab. 2008;26:53–59. DOI: https://doi.org/10.1007/s00774-007-0797-1

Verdenius HHW and Alma L, A quantitative study of decalcification methods in histology. J Clin Pathol. 1958;11: 229–236. DOI: https://doi.org/10.1136/jcp.11.3.229

Sheehan, D.C. and Hrapchak, B.B. : Theory and Practice of Histotechnology, 2nd Edition; Battelle Memorial Institute, Columbus, OH, 1987.

Aurori BF, Weierman RJ, Lowell HA, et al: Pseudoarthrosis after spinal fusion for scoliosis. A comparison of autogenic and allogenic bone grafts. Clin Orthop. 1985;199:153–158. DOI: https://doi.org/10.1097/00003086-198510000-00020

Moore DC, Maitra RS, Farzo LA, Graziano GP, Goldstein SA. Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement. Spine. 1997; 22:1696–1705. DOI: https://doi.org/10.1097/00007632-199708010-00003

Chang MC, Liu CL, Chen TH. Polymethylmethacrylate augmentation of pedicle screw for osteoporotic spinal surgery: a novel technique. Spine. 2008;33:317–324. DOI: https://doi.org/10.1097/BRS.0b013e31816f6c73

Renner SM, Lim TH, Kim WJ, Katolik L, An HS, Andersson GB. Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection: timing and method. Spine. 2004; 29:212–216. DOI: https://doi.org/10.1097/00007632-200406010-00020

Fransen P. Increasing pedicle screw anchoring in the osteoporotic spine by cement injection through the implant. J Neurosurg. 2007; 7: 366–369. DOI: https://doi.org/10.3171/SPI-07/09/366

Chen W-J, Kao Y-H, Yang S-C, et al. Impact of cement leakage into disks on the development of adjacent vertebral compression fractures. J Spinal Disord Tech. 2010; 23:34–39. DOI: https://doi.org/10.1097/BSD.0b013e3181981843

Bullmann V, Schmoelz W, Richter M, et al. Revision of cannulated and perforated cement-augmented pedicle screws. Spine. 2010; 35: 932–939. DOI: https://doi.org/10.1097/BRS.0b013e3181c6ec60

Bucholz RW, Carlton A, Holmes RE: Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am. 1987;18:323–334. DOI: https://doi.org/10.1016/S0030-5898(20)30395-3

Spivak JM, Neuwirth MG, Labiak JJ, Kummer FJ, Ricci JL. Hydroxyapatite enhancement of posterior spinal instrumentation fixation. Spine. 1994; 19: 955–964. DOI: https://doi.org/10.1097/00007632-199404150-00015

Sellers RS, Peluso D, Morris EA. The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Jt Surg Am. 1997;79:1452-1463. DOI: https://doi.org/10.2106/00004623-199710000-00002

Chen NF, Smith ZA, Stiner E, et al. Symptomatic ectopic bone formation after off-label use of recombinant human bone morphogenetic protein-2 in transforaminal lumbar interbody fusion. J Neurosurg Spine. 2010; 12:40-6. DOI: https://doi.org/10.3171/2009.4.SPINE0876

Wong DA, Kumar A, Jatana S, et al. Neurologic impairment from ectopic bone in the lumbar canal: a potential complication of off-label PLIF/TLIF use of bone morphogenetic protein-2 (BMP-2). Spine. 2008; 8:1011-1018. DOI: https://doi.org/10.1016/j.spinee.2007.06.014

Sarzier JS, Evans AJ, Cahill DW. Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg. 2002; 96:309–312. DOI: https://doi.org/10.3171/spi.2002.96.3.0309

Burval DJ, Mclain RF, Milks R, Inceoglu S. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae. Spine. 2007;32: 1077–1083. DOI: https://doi.org/10.1097/01.brs.0000261566.38422.40

Lotz JC, Hu SS, Chiu DF, et al. Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine. Spine. 1997;22: 2716–2723. DOI: https://doi.org/10.1097/00007632-199712010-00003

Wu ZX, Cui G, Lei W, Fan Y, Wan SY, Ma ZS. Application of an expandable pedicle screw in the severe osteoporotic spine: a preliminary study. Clin Invest Med. 2010;33:1–8. DOI: https://doi.org/10.25011/cim.v33i6.14587

Bishop RC, Moore KA, Hadley MN: Anterior cervical interbody fusion using autogeneic and allogeneic bone graft substrate: a prospective comparative analysis. J Neurosurg. 1996;85:206–210. DOI: https://doi.org/10.3171/jns.1996.85.2.0206

Cook SD, Wolfe MW, Salkeld SL, Rueger DC. Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. J Bone Jt Surg Am. 1995;77:734-750. DOI: https://doi.org/10.2106/00004623-199505000-00010

Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Jt Surg Am. 2002;84:2123-2134. DOI: https://doi.org/10.2106/00004623-200212000-00001

Wang EA, Rosen V, D’Alessandro JS, Bauduy M, Cordes P, Harada T, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA. 1990;87:2220-2224. DOI: https://doi.org/10.1073/pnas.87.6.2220

Downloads

Published

2014-05-15

How to Cite

1.
Gulsen S, Cokeliler D, Goktas H, Kucukturhan A, Ozcil B, Caner H. Improved Bone Formation in Osteoporotic Rabbits with the Bone Morphogenetic Protein-2 (rhBMP-2) Coated Titanium Screws Which Were Coated By Using Plasma Polymerization Technique. Open Access Maced J Med Sci [Internet]. 2014 May 15 [cited 2024 Apr. 19];2(2):198-20. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2014.031

Issue

Section

A - Basic Science

Most read articles by the same author(s)