Toxicity, Deficiency and Dysmetabolism of Trace Elements in Ghanaian Clinically Stable Schizophrenics

Authors

  • George A. Asare University of Ghana School of Allied Health Sciences (SAHS), PO Box KB 143, Korle Bu
  • Ruth Tetteh University of Ghana School of Allied Health Sciences (SAHS), PO Box KB 143, Korle Bu
  • Elsie Amedonu University of Ghana School of Allied Health Sciences (SAHS), PO Box KB 143, Korle Bu
  • Bernice Asiedu University of Ghana School of Allied Health Sciences (SAHS), PO Box KB 143, Korle Bu
  • Derek Doku University of Ghana School of Allied Health Sciences (SAHS), PO Box KB 143, Korle Bu

DOI:

https://doi.org/10.3889/oamjms.2014.049

Keywords:

schizophrenia, trace elements, dysmetabolism, psychiatric patients, Accra.

Abstract

AIM: The purpose of the study was to determine the levels of Copper (Cu), selenium (Se), Zinc (Zn), Lead (Pb) and Lithium (Li) in patients in Accra and Pantang Psychiatric Hospitals in Ghana since no data exist.

SUBJECTS AND METHODS: Simple random sampling of age-matched subjects was used to recruit 81 schizophrenics and 25 mentally healthy controls in 2012. Serum levels of Cu, Se, Zn, Pb and Li were determined by flame atomic absorption spectroscopy (FAAS). 

RESULTS: Mean levels were as follows: Cut 766 ± 250 µg/L and Cuc 855 ± 270 µg/L (p = 0.168). Set 149 ± 72 µg/L and Sec 108 ± 61 µg/L (p=0.009). Znt 702 ± 438 µg/L and Znc 1007 ± 593 µg/L (p = 0.028). Pbt 1.38 ± 0.05 µg/L and Pbc 0.10 ± 0.05 µg/L (p = 0.000). Li levels for the test group (Lit) was 4077 ± 2567 µg/L, whiles that of the controls was undetectable < 0.02 µg/L. Se, Pb and Li levels were significantly higher in schizophrenic patients compared to controls. While Zn and Cu levels were lower in the same group.

CONCLUSION: Trace elements dysmetabolism exist among Ghanaian schizophrenics and monitoring is essential to avoid the adverse effects of metal overload or deficiency.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

World Health Organization. World Health Report 2001, Geneva, 2001. http://www.who.int/whr/2001/media_centre/press_release/en/index.html

World Health Organization. Ghana Country Summary, Dept. Of Mental Health and Substance Abuse, 2007. http://www.who.int/mental_health/policy/country/ghana/en/

Wittchen HU, Jacobi F. Size and burden of mental disorders in Europe - a critical review and appraisal of 27 studies. Eur Neuropsychopharmacol. 2005; 15: 357-76. DOI: https://doi.org/10.1016/j.euroneuro.2005.04.012

Saha S, Chant D, Welham J, McGrath J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005; 2:e141. DOI: https://doi.org/10.1371/journal.pmed.0020141

Bhugra D. The Global Prevalence of Schizophrenia. PLoS Med. 2005; 2:e151. DOI: https://doi.org/10.1371/journal.pmed.0020151

Cohen A. Prognosis for schizophrenia in the Third World: A re-evaluation of crosscultural research. Culture Med Psychiatry. 1992; 16: 53-75. DOI: https://doi.org/10.1007/BF00054439

Deckmann M, Mamillapalli R, Schechtman L, Shinitzky M. A conformational epitope which detects autoantibodies from schizophrenic patients. Clin Chim Acta. 2002; 322: 91-8. DOI: https://doi.org/10.1016/S0009-8981(02)00162-6

Pfeiffer CC, Bacchi D. Cooper, zinc, manganese, niacin and pridoxine in the schizophrenias. Appl Nutr. 1975; 27: 9-39.

Wolf TL, Kotun J, Meador-Woodruff JH. Plasma copper, iron, ceruloplasmin and ferroxidase activity in schizophrenia. Schizophr Res. 2006; 86: 167-71. DOI: https://doi.org/10.1016/j.schres.2006.05.027

Herran A. Higher levels of serum copper in schizophrenic patients treated with depot neuroleptics. Psychiatry Res. 2000; 94: 51-58. DOI: https://doi.org/10.1016/S0165-1781(00)00126-8

Yanik M, Kocyigit A, Tutkun H. Plasma manganese, selenium, zinc, copper, and iron concentrations in patients with schizophrenia. Biol Trace Elem Res. 2004; 98: 109-117. DOI: https://doi.org/10.1385/BTER:98:2:109

Bowman MB, Lewis M. The copper hypothesis of schizophrenia: a review. Neurosci Biobehav. 1982; Rev 6: 321-328. DOI: https://doi.org/10.1016/0149-7634(82)90044-6

Anisman H, Zacharko RM. Behavioral and neurochemical consequences associated with stressors. Ann N Y Acad Sci. 1986; 467: 205-225. DOI: https://doi.org/10.1111/j.1749-6632.1986.tb14630.x

David J, Brooks PP. Imaging in Parkinson’s disease: The role of monoamines in behavior. Biol Psychiatry. 2006; 59: 908-918. DOI: https://doi.org/10.1016/j.biopsych.2005.12.017

Assadi SM, Yücel M, Pantelis C. Dopamine modulates neural networks involved in effort-based decision-making. Neurosci Biobehav Rev. 2009; 33: 383-393. DOI: https://doi.org/10.1016/j.neubiorev.2008.10.010

Schweizer and Schomburg. Selinium, selinoproteins and brain function. In D. Hatfield, M Berry and V. Gladysshev (eds). Selinium: Its molecular Biology and Role in Human Health. New York: Springer US, 2006: p. 233-248. DOI: https://doi.org/10.1007/0-387-33827-6_21

Xiang N, Zhoa R, Song G, Zhong W. Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells. Carcinogenesis. 2008; 29: 2175 – 2181. DOI: https://doi.org/10.1093/carcin/bgn179

Uthus E, Ross S, Davis C. Different effects of dietary selenium (Se) and folate metabolism in liver and colon of rats. Biol Trace Elem Res. 2006; 109: 201-214. DOI: https://doi.org/10.1385/BTER:109:3:201

Pfeiffer CC, Braveman ER. Zinc, brain and behavior. Biol Psychiatry. 1982; 17: 513-532.

Sandstead HH. Zinc: essentiality for brain development and function. Nutr Rev. 1998; 43(5): 130-137. DOI: https://doi.org/10.1111/j.1753-4887.1985.tb06889.x

Fosmire GJ, Al-Ubaidi Y, Sandstead HH. Some effects of postnatal zinc deficiency on developing rat brain. Pediatr Res. 1975; 9: 89. DOI: https://doi.org/10.1203/00006450-197502000-00006

Rahman A, Azad MA, Hossain I, Qusar MM, Bari W, Begum F, Huq SM, Hasnat A. Zinc, manganese, calcium, copper, and cadmium level in scalp hair samples of schizophrenic patients. Biol Trace Elem Res. 2009; 127(2): 102-8. DOI: https://doi.org/10.1007/s12011-008-8230-8

Moreira EG, Vassilieff I, Vassilieff VS. Developmental lead exposure: behavioral alterations in the short and long term. Neurotoxicol Teratol. 2001; 23(5): 489-95. DOI: https://doi.org/10.1016/S0892-0362(01)00159-3

Guilarte TR. Prenatal lead exposure and schizophrenia: further evidence and more neurobiological connections. Environ Health Perspect. 2009; 117(5): A190-1. DOI: https://doi.org/10.1289/ehp.0800484

Maeda K, Sugino H, Hirose T, Kitagawa H, Nagai T, Mizoguchi H, Takuma K, Yamada K. Clozapine prevents a decrease in neurogenesis in mice repeatedly treated with phencyclidine. J Pharmacol Sci. 2007; 103: 299-308. DOI: https://doi.org/10.1254/jphs.FP0061424

Schrauzer GN. Lithium: Occurrence, dietary intakes, nutritional essentiality. J Am Coll Nutr. 2002; 21 (1): 14-21. DOI: https://doi.org/10.1080/07315724.2002.10719188

Ono T, Wada O. Effect of lithium deficient diet on avoidance behavior of animals and a discussion of the essentiality of lithium. Biomed Res Trace Elem. 1991; 12: 264-265.

Klemfuss H, Schrauzer GN. Effects of nutritional lithium deficiency on behavior in rats. Biol Trace Elem Res. 1995; 48: 131-139. DOI: https://doi.org/10.1007/BF02789187

Dawson EB. The relationship of tap water and physiological levels of lithium to mental hospital admission and homicide in Texas. In: Schrauzer GN, Klippel KF (eds) Lithium in Biology and Medicine, Weinheim, VCH Verlag, 1991: p 171-187.

Kripke DF, Wyborney VG. Lithium slows rat circadian activity rhythms. Life Sci. 1980; 26: 1319-1321. DOI: https://doi.org/10.1016/0024-3205(80)90091-0

Welsh DK, Moore-Ede MC. Lithium lengthens circadian period in a diurnal primate, Saimiri sciureus. Biol Psychiatry. 1990; 28:117-126. DOI: https://doi.org/10.1016/0006-3223(90)90629-G

Abe M, Herzog ED, Block GD. Lithium lengthens the circadian period of individual suprachiasmatic nucleus neurons. Neuroreport. 2000; 11: 3261-3264. DOI: https://doi.org/10.1097/00001756-200009280-00042

Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA. 1996; 93: 8455-8459. DOI: https://doi.org/10.1073/pnas.93.16.8455

Yin L, Wang J, Klein PS, Lazar MA. Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science. 2006; 311: 1002-1005. DOI: https://doi.org/10.1126/science.1121613

Nechifor M, Vaideanu C, Palamaru L, Mindreci I. The influence of some antipsychotics on erythrocyte magnesium and plasma magnesium, calcium, copper and zinc in patients with paranoid schizophrenia. J Am Coll Nutr. 23 2004; 5: 549S- 551S. DOI: https://doi.org/10.1080/07315724.2004.10719401

Johnson S. Micronutrient accumulation and depletion in schizophrenia, epilepsy, autism and Parkinson’s disease? Med Hypotheses. 2001; 56: 641-645. DOI: https://doi.org/10.1054/mehy.2000.1302

Asare GA, Osae, S, Nortey, ENN, Yambire, FK, Amedonu E, Doku D, Annan Y. Evaluation of serum Metallothionein-1, Selenium, Zinc, and Copper in Ghanaian Diabetes Mellitus type 2 Patients. Int J Diabetes Dev Ctries. 2013; DOI 10.1007/S13410-013-0111-9. DOI: https://doi.org/10.1007/s13410-013-0111-9

Kharb S, Sharma A, Vohra AK, Yadav S, Singh I. Selenium levels in patients with schizophrenia. J Med Lab Diag. 2010; 1: 15-16.

Vaddadi KS, Soosai E, Vaddadi G. Low blood selenium concentrations in schizophrenic patients on clozapine. Br J Clin Pharmacol. 2002; 55: 307-309. DOI: https://doi.org/10.1046/j.1365-2125.2003.01773.x

Foster HD. The geography of schizophrenia: possible links with selenium and calcium deficiencies, inadequate exposure to sunlight and industrialization. J Orthomol Med. 1988; 3: 135-140.

Brown Jr. JS, Foster HD. Schizophrenia: An update of the selenium deficiency hypothesis. J Orthomol Med. 1996; 11 (4): 211-222.

Tada K, Nogami Y, Nagashima M, Nagase T, Ishiwata H, Motegi Y, Ikeda M. Trace elements in the hair of schizophrenics. Biol Psychiatry. 1986; 21: 325-328. DOI: https://doi.org/10.1016/0006-3223(86)90056-9

Alertsen AR, Aukrust A, Skaug OE. Selenium concentrations in blood and serum from patients with mental diseases. Acta Psychiatr Scan. 1986; 74(2): 217-9. DOI: https://doi.org/10.1111/j.1600-0447.1986.tb10608.x

Andrews RC. Unification of the findings in schizophrenia by reference to the effects of gestational zinc deficiency. Med Hypotheses. 1990; 31: 141-153. DOI: https://doi.org/10.1016/0306-9877(90)90010-C

Pfeiffer CC, Ilier U. A study of zinc deficiency and copper excess in the schizophrenia. Intl Rev Neurobiol. 1972; (Suppl 1): 141-165. DOI: https://doi.org/10.1016/B978-0-12-366851-6.50012-0

Adams CE, De Masters BK, Freedman R. Regional zinc staining in post-mortem hippocampus from schizophrenic patients. Schizophr Res. 1995; 18: 71-77. DOI: https://doi.org/10.1016/0920-9964(95)00041-0

Tokdemir M, Polat SA, Acik Y, Gursu F, Cikim G, Deniz O. Blood zinc and copper concentrations in criminal and noncriminal schizophrenic men. Arch of Andr. 2003; 49 (5): 365-8. DOI: https://doi.org/10.1080/713828212

Maes M, Vandoolaeghe E, Neels H, Demedts P, Wauters A, Meltzer HY, Altamura C, Desnyder R. Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illness. Biol Psychiatry. 1997; 42(5): 349-58. DOI: https://doi.org/10.1016/S0006-3223(96)00365-4

Noseworthy MD, Bray TM. Zinc Deficiency Exacerbates Loss in Blood-Brain Barrier Integrity Induced by Hyperoxia Measured by Dynamic MRI. Proc Soc Exp Biol Med. 2008; 223(2): 175 – 182. DOI: https://doi.org/10.1111/j.1525-1373.2000.22324.x

Opler MGA, Brown AS, Graziano J, Desai M, Zheng W, Schaefer C, Factor-Litvak P, Susser ES. Prenatal lead exposure, δ-aminolevulinic acid, and schizophrenia. Environ Health Perspect. 2004; 112: 548-552. DOI: https://doi.org/10.1289/ehp.6777

Opler MGA, Buka SL, Groeger J, McKeague I, Wei C, Factor-Litvak P, Bresnahan M, Graziano J, Goldstein JM, Seidman LJ, Brown AS, Susser ES. Prenatal exposure to lead, δ-aminolevulinic acid, and schizophrenia: further evidence. Environ Health Perspect. 2008; 116:1586-1590. DOI: https://doi.org/10.1289/ehp.10464

Guilarte TR. Prenatal Lead Exposure and Schizophrenia: A Plausible Neurobiologic Connection. Environ Health Perspect. 2004; 112 (13): A742. DOI: https://doi.org/10.1289/ehp.112-a724a

Guilarte TR, Opler M, Pletnikov M. Is lead exposure in early life an environmental risk factor for Schizophrenia? Neurobiological connections and testable hypotheses. Neurotox. 2012; 33(3): 560-74. DOI: https://doi.org/10.1016/j.neuro.2011.11.008

Murray RM, O'Callaghan E, Castle DJ, Lewis SW. A neurodevelopmental approach to the classification of schizophrenia. Schizophr Bull. 1992; 18: 319-32. DOI: https://doi.org/10.1093/schbul/18.2.319

Weinberger DR. From neuropathology to neurodevelopment. Lancet. 1995; 346: 552-7. DOI: https://doi.org/10.1016/S0140-6736(95)91386-6

Leucht S, Kissling W, McGrath J. Lithium for schizophrenia revisited: a systematic review and meta-analysis of randomized controlled trials. J Clin Psychiatry. 2004; 65: 177-86. DOI: https://doi.org/10.4088/JCP.v65n0206

Citrome L. Adjunctive lithium and anticonvulsants for the treatment of schizophrenia: what is the evidence? Expert Rev Neurother. 2009; 9(1): 55-71. DOI: https://doi.org/10.1586/14737175.9.1.55

Downloads

Published

2014-06-15

How to Cite

1.
Asare GA, Tetteh R, Amedonu E, Asiedu B, Doku D. Toxicity, Deficiency and Dysmetabolism of Trace Elements in Ghanaian Clinically Stable Schizophrenics. Open Access Maced J Med Sci [Internet]. 2014 Jun. 15 [cited 2024 Mar. 28];2(2):293-8. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2014.049

Issue

Section

B - Clinical Sciences