Lamivudine-Induced Liver Injury

Authors

  • Lamidi W. B. Olaniyan Biochemistry Department, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso
  • Emmanuel N. Maduagwu Biochemistry Department, College of Medicine, University of Ibadan, Ibadan
  • Olalekan Wasiu Akintunde Anatomy Department, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology Ogbomoso, Ogbomoso
  • Oladimeji O. Oluwayelu Veterinary Microbiology and Parasitology Department, Faculty of Veterinary Medicine, University of Ibadan, Ibadan
  • Bartholomew I. C. Brai Molecular Biology and Biotechnology Division, Nigerian Institute of Medical Research Lagos, Lagos

DOI:

https://doi.org/10.3889/oamjms.2015.110

Keywords:

Embryonated egg, Histopathology, Lamivudine cytotoxicity, Oxidative, stress

Abstract

BACKGROUND: Lamivudine is a nucleoside analogue antiretroviral drug, known for its low toxicity at clinically prescribed dose. However, the toxicity or mechanism of toxicity and target tissue effects during prolonged administration of higher doses were hardly given sufficient laboratory attention.

AIM: The present work was designed to investigate the biochemical and histopathological changes in the liver of rat administered with prolonged doses of lamivudine.

MATERIAL AND METHODS: Lamivudine in multiple doses of five ranging from 4 mg/kg to 2500 mg/kg were administered, in vitro, by injection into the air-sac of 10–day old fertile embryonated eggs of Gallus domesticus. Also, female rats of the Wistar strain received oral doses, up to 500 mg/kg singly or repeatedly for 15 or 45 days, respectively. Spectrophotometric techniques were employed to monitor activities of the aminotransferases (ALT and AST), γ–glutamyltransferase (GGT) and total protein concentration in serum while activities of glutathione S–transferase (GST), GGT and superoxide dismutase (SOD) as well as concentrations of malondialdehyde (MDA) and protein were determined in liver. Histopathological studies were carried out on liver. Data were analysed using ANOVA and were considered significant when p < 0.05.

RESULTS: The LD50 for the drug calculated from the incubation experiment was 427 mg/kg. Total serum protein concentration significantly reduced while enzymes activities significantly increased at 500 mg/kg only among the repeat-dosed rats. Hepatic GGT, GST and SOD activities as well as MDA concentration were significantly elevated at 20 mg/kg. Histopathological studies showed multifocal lymphoid cell population in the liver sinusoid of the chicken and hydropic degeneration of hepatocytes were recorded among rats repeatedly exposed to the drug respectively at doses ≥ 100  mg/kg.

CONCLUSION: Lamivudine toxicity in rat liver appeared to be mediated by oxidative stress.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Lewis W, Dalakas MC. Mitochondrial toxicity of antiviral drugs. Nat Med. 1995; 1: 417 – 422.

http://dx.doi.org/10.1038/nm0595-417 DOI: https://doi.org/10.1038/nm0595-417

PMid:7585087

Lewis W, Copeland WC, Day BJ. Mitochondrial DNA depletion, oxidative stress and mutation: mechanisms of dysfunction from nucleoside reverse transcriptase inhibitors. Lab Invest. 2001; 81: 777– 790.

http://dx.doi.org/10.1038/labinvest.3780288 DOI: https://doi.org/10.1038/labinvest.3780288

PMid:11406640

Walker UA, McComsey GA. Mitochondrial toxicity of nucleoside analog In: HIV Medicines 2007. Hoffmann C., Rockstroh J. K. and Kamps B. S. (eds.) Flying Publisher 15th Edition, 2007: Pp. 309 – 318.

Johnson MA, Moore KHP, Yuen GJ, Bye A, Pakes GE. Clinical pharmacokinetics of lamivudine. Clin Pharmacokinet. 1999; 36: 41 – 66.

http://dx.doi.org/10.2165/00003088-199936010-00004 DOI: https://doi.org/10.2165/00003088-199936010-00004

PMid:9989342

Feng JY, Johnson AA, Johnson KA, Anderson KS. Insights into molecular mechanism of mitochondrial toxicity by AIDS drugs. J Biol Chem. 2001;276 (26): 23832 – 23837.

http://dx.doi.org/10.1074/jbc.M101156200 DOI: https://doi.org/10.1074/jbc.M101156200

PMid:11328813

Lai CL, Chien RN, Leung NW. A one-year trial of Lamivudine study group. N Eng J Med. 1998;389. 2: 61-68.

http://dx.doi.org/10.1056/NEJM199807093390201 DOI: https://doi.org/10.1056/NEJM199807093390201

PMid:9654535

Kamps BS, Hoffmann C. Drugs Profiles. In: HIV Medicine, Hoffmann C, Rockstroh JK, Kamps BS. (eds.), 15th edtn. Flying Publisher, 2007: Pp.705 – 766.

Li J, Xiong G, Huang Z, Li G, Xiao B, Zhu D, Tan X, Liu Y. Parkinsonism with long term use of Lamivudine. Neurology Asia. 2007; 12: 111 – 113.

Gabliks J, Schaeffer W, Friendman L, Wogan G. Effect of aflatoxin B on cell cultures. J Bact. 1965;90 (3):720 – 723. DOI: https://doi.org/10.1128/jb.90.3.720-723.1965

PMid:16562072 PMCid:PMC315716

Tint H, Gillen A. A Normograph for determining fifty per cent endpoints. J Appl Bact. 1961;24 (1); 83 – 86.

http://dx.doi.org/10.1111/j.1365-2672.1961.tb00236.x DOI: https://doi.org/10.1111/j.1365-2672.1961.tb00236.x

Weil CS. Tables for convenient calculation of median effective dose (LD50) and instructions in their use. Biometrics. 1952; 8: 249-263.

http://dx.doi.org/10.2307/3001557 DOI: https://doi.org/10.2307/3001557

Yemitan OK, Adeyemi OO. Toxicity studies of the aqueous root extract of Lecaniodiscus cupaniodes. Nig J Health Biomed Sci. 2004;3 (1); 20 – 23. DOI: https://doi.org/10.4314/njhbs.v3i1.11501

Kaushal R, Dave KR, Katyare SS. Paracetamol hepatotoxicity and microsomal function. Environ Toxicol Pharmacol. 1999; 1: 67 – 74.

http://dx.doi.org/10.1016/S1382-6689(98)00053-2 DOI: https://doi.org/10.1016/S1382-6689(98)00053-2

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193: 265 – 275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

PMid:14907713

Yuda Y, Tanaka J, Hirano F, Igarashi K, Satoh. T. Participation of lipid peroxidation in rat pertussive vaccine pleurisy. III. Thiobarbituric acid reactant and lysosomal enzyme. Chem Pharmaceut Bull. 1991;39 (2): 505 – 506.

http://dx.doi.org/10.1248/cpb.39.505 DOI: https://doi.org/10.1248/cpb.39.505

Habig WH, Pabst MJ, Jacoby WB. Glutathione S-transferases. J Biol Chem. 1974;249: 7130 – 7139. DOI: https://doi.org/10.1016/S0021-9258(19)42083-8

PMid:4436300

Rosalki SB, Tarlow D. Optimized determination of gamma glutamyltransferase activity by reaction-rate analysis. Clin Chem. 1974;20(9):1121 – 1124. DOI: https://doi.org/10.1093/clinchem/20.9.1121

PMid:4153424

Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10): 3170 - 3175. DOI: https://doi.org/10.1016/S0021-9258(19)45228-9

PMid:4623845

Nakai K, Ward AM, Gannon M, Rifkind AB. Naphthoflavone induction of a cytochrome P – 450 arachidonic acid epoxygenase in chick embryo liver distinct from Phenobarbital – induced arachidonate epoxygenase. J Biol Chem. 1992;267:19503 –19512. DOI: https://doi.org/10.1016/S0021-9258(18)41804-2

PMid:1527070

Rifkind AB, Kanetoshi A, Orlinick J, Capdevila JH, Lee C. Purification and biochemical characterization of two major cytochrome P – 450 isoforms induced by 2,3,7,8 – tetrachlorodibenzo – p- dioxin in chick embryo. J Biol Chem. 1994;269; 3387 – 3396. DOI: https://doi.org/10.1016/S0021-9258(17)41874-6

PMid:8106378

Pijl H, Meinder AE. Body weight change as an adverse effect of drug treatment: Mechanism and management. Drug Safety. 1996; 14.5: 329 – 342.

http://dx.doi.org/10.2165/00002018-199614050-00005 DOI: https://doi.org/10.2165/00002018-199614050-00005

PMid:8800628

Das SK, Vasudevan DM. Effect of ethanol on liver antioxidant defense systems; a dose dependent study. Ind J Clin Biochem. 2005;20 (1): 79 – 83.

http://dx.doi.org/10.1007/BF02893047 DOI: https://doi.org/10.1007/BF02893047

PMid:23105499 PMCid:PMC3454179

Kakuda TN, Brundage RC, Anderson PL, Fletcher CV. Nucleoside reverse inhibitor-induced mitochondrial toxicity as an etiology for lipodystrophy. AIDS. 1999; 13 (16);2311-2313.

http://dx.doi.org/10.1097/00002030-199911120-00019 DOI: https://doi.org/10.1097/00002030-199911120-00019

PMid:10563722

Sallie R, Tredger J, Williams R. Drugs and the liver. Biopharm. Drug Disp. 1991;12: 257 – 259. DOI: https://doi.org/10.1002/bdd.2510120403

Abatan MO, Arowolo ROA, Olorunsogo O. Pathological effects of Lantana camara and Dichapetalum madagascasiense in goats. Trop Med. 1996;14:127 – 132.

John AM, Rehmtula YA, Menezes CN, Grobusch MP. Lamivudine– induced red cell aplasia. J Med Microbiol. 2008;57: 1032 – 1035.

http://dx.doi.org/10.1099/jmm.0.47782-0 DOI: https://doi.org/10.1099/jmm.0.47782-0

PMid:18628508

Maddaiah VT. Glutathione correlates with lipid peroxidation in liver mitochondria of triiodothyronine – injected hypophysectomised rats. FASEB J. 1990;4:1513 –1518. DOI: https://doi.org/10.1096/fasebj.4.5.2307329

PMid:2307329

Stallard N, Whitehead A. A statistical evaluation of the fixed dose procedure. ATLA. 2004; 32(Suppl. 2): 13 – 21. DOI: https://doi.org/10.1177/026119290403202s05

PMid:15601221

Published

2015-10-16

How to Cite

1.
Olaniyan LWB, Maduagwu EN, Akintunde OW, Oluwayelu OO, Brai BIC. Lamivudine-Induced Liver Injury. Open Access Maced J Med Sci [Internet]. 2015 Oct. 16 [cited 2024 Apr. 26];3(4):545-50. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2015.110

Issue

Section

A - Basic Science