Expression Levels of Some Detoxification Genes in Liver and Testis of Rats Exposed to a Single Dose of Methyl-Tertiary Butyl Ether

Authors

  • Ahmad Ali Badr Department of Biology, College of Sciences, Shiraz University, Shiraz 71467-13565
  • Mostafa Saadat Department of Biology, College of Sciences, Shiraz University, Shiraz 71467-13565

DOI:

https://doi.org/10.3889/oamjms.2016.057

Keywords:

Methyl tertiary butyl ether, MTBE, Gene expression, Rat, GST

Abstract

AIM: Methyl-tertiary-butyl ether (MTBE), a well-known gasoline oxygenate compound, is still used in several countries. Several studies investigated the effects of MTBE on the activity of phase II metabolism enzymes. There is no published data on the effect(s) of short-term exposure to MTBE on mRNA levels of antioxidant genes. Therefore, the present study was carried out.

METHODS: A total of 15 adults male Wistar rats were randomly divided into five equal experimental groups. They received a single dose of 0, 400, 800 and 1600 mg/Kg MTBE in peanut oil by gavages. The final group received no MTBE and peanut oil. After 24 hr animals were slaughtered then livers and testis were removed to extract the total RNA. Real-time PCR was done to detect the gene expressions of glutathione S-transferase family (Gstt1, Gstm1, and Gstp1).

RESULTS: The mRNAs levels of the examined genes neither in liver nor in testis showed a significant difference between the exposed groups and control rats.

CONCLUSIONS: The present data revealed that exposure to a single dose of MTBE has no significant effect on the mRNA levels of the Gstt1, Gstm1, and Gstp1 genes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Saadat M, Monzavi N. Genetic polymorphisms of glutathione S-transferase T1 (GSTT1) and alterations of sex hormones in filling-station workers. Fertil Steril. 2008;89:1777-1780. http://dx.doi.org/10.1016/j.fertnstert.2007.06.024 PMid:17880951

Prah J, Ashley D, Blount B, et al. Dermal, oral and inhalation pharmacokinetics of methyl tertiary butyl ether (MTBE) in human volunteers. Toxicol Sci. 2004;77:195-205. http://dx.doi.org/10.1093/toxsci/kfh009 PMid:14600279

Phillips S, Palmer RB, Brody A. Epidemiology, toxicokinetics, and health effects of methyl tert-butyl ether (MTBE). J Med Toxicol. 2008;4:115-126. http://dx.doi.org/10.1007/BF03160966 PMid:18570173 PMCid:PMC3550129

Hu D, Yang J, Liu Y, et al. Health risk assessment for inhalation exposure to methyl tertiary butyl ether at petrol stations in southern China. Int J Environ Res Public Health. 2016;13(2). http://dx.doi.org/10.3390/ijerph13020204

Zhang L, Qin J, Zhang Z, et al. Concentrations and potential health risks of methyl tertiary-butyl ether (MTBE) in air and drinking water from Nanning, South China. Sci Total Environ. 2016;541:1348-1354. http://dx.doi.org/10.1016/j.scitotenv.2015.10.038 PMid:26479908

Elovaara E, Stockmann-Juvala H, Mikkola JV, et al. Interactive effects of methyl tertiary-butyl ether (MTBE) and tertiary-amyl methyl ether (TAME), ethanol and some drugs: Triglyceridemia, liver toxicity, and induction of CYP (2E1, 2B1) and phase II enzymes in female Wistar rats. Environ Toxicol Pharmacol. 2007;23:64-72. http://dx.doi.org/10.1016/j.etap.2006.07.003 PMid:21783738

Khalili L, Gholami S, Ansari-Lari M. Evaluation of offspring sex ratio, sex hormones and antioxidant enzymes following exposure to methyl tertiary butyl ether in adult male Sprague-Dawley rats. EXCLI J. 2015;14:75-82. PMid:26417352 PMCid:PMC4553898

Salimi A, Vaghar-Moussavi M, Seydi E, et al. Toxicity of methyl tertiary-butyl ether on human blood lymphocytes. Environ Sci Pollut Res Int. 2016; 23(9):8556-64. http://dx.doi.org/10.1007/s11356-016-6090-x PMid:26797945

Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51-88. http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095857 PMid:15822171

Li W, Ichihara G, Wang H, et al. Change of gonad gene expression profile in male F344 rats after exposure to 1-bromopropane. Wei Sheng Yan Jiu. 2010;39:191-196. [in Chinese] PMid:20459034

Sherratt PJ, Manson MM, Thomson AM, et al. Increased bioactivation of dihaloalkanes in rat liver due to induction of class theta glutathione S-transferase T1-1. Biochem J. 1998;335: 619-630. http://dx.doi.org/10.1042/bj3350619 PMid:9794803 PMCid:PMC1219824

Nteeba J, Ganesan S, Keating AF. Impact of obesity on ovotoxicity induced by 7,12-dimethylbenz[a]anthracene in mice. Biol Reprod. 2014;90:68. http://dx.doi.org/10.1095/biolreprod.113.114215 PMid:24501177 PMCid:PMC4435232

Sharma A, Saurabh K, Yadav S, et al. Expression profiling of selected genes of toxication and detoxication pathways in peripheral blood lymphocytes as a biomarker for predicting toxicity of environmental chemicals. Int J Hyg Environ Health. 2013;216:645-651. http://dx.doi.org/10.1016/j.ijheh.2012.11.002 PMid:23273579

Shimada Y, Dewa Y, Ichimura R, et al. Antioxidant enzymatically modified isoquercitrin suppresses the development of liver preneoplastic lesions in rats induced by beta-naphthoflavone. Toxicology. 2010;268:213-218. http://dx.doi.org/10.1016/j.tox.2009.12.019 PMid:20045035

Raza H. Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease. FEBS J. 2011;278:4243-4251. http://dx.doi.org/10.1111/j.1742-4658.2011.08358.x PMid:21929724 PMCid:PMC3204177

Saadat M, Bahaoddini S, Saadat I. Alteration of serum sex hormonal profile in male gasoline filling station workers in respect to their polymorphism of glutathione S-transferase M1. Environ Toxicol Pharmacol. 2013;35:265-269. http://dx.doi.org/10.1016/j.etap.2013.01.003 PMid:23357602

Ansari-Lari M, Saadat M, Hadi N. Modulation of hematology changes by polymorphism of glutathione S-transferase M1 and T1. Biochem Biophys Res Commun. 2003;312:299-302. http://dx.doi.org/10.1016/j.bbrc.2003.10.122 PMid:14637136

Ansari-Lari M, Saadat M, Hadi N. Influence of GSTT1 null genotype on the offspring sex ratio of gasoline filling station workers. J Epidemiol Community Health. 2004;58:393-394. http://dx.doi.org/10.1136/jech.2003.011643 PMid:15082737 PMCid:PMC1732771

Saadat M. Genetic polymorphisms of glutathione S-transferases M1 and T1 modulate hematological changes of individuals chronically exposed to natural sour gas. Biochem Biophys Res Commun. 2004;324:584-587. http://dx.doi.org/10.1016/j.bbrc.2004.09.090 PMid:15474467

Saadat M, Bahaoddini A, Mohabatkar H. Polymorphisms of glutathione S-transferase M1 and T1 modulate blood pressure of individuals chronically exposed to natural sour gas containing sulfur compounds. Biochem Biophys Res Commun. 2004;316:749-752. http://dx.doi.org/10.1016/j.bbrc.2004.02.116 PMid:15033463

Saadat M, Ansari-Lari M. Alterations of liver function test indices of filling station workers with respect of genetic polymorphisms of GSTM1 and GSTT1. Cancer Lett. 2005;227:163-167. http://dx.doi.org/10.1016/j.canlet.2005.03.044 PMid:15894422

Saadat M, Zendeh-Boodi Z. Association between genetic polymorphism of GSTT1 and depression score in individuals chronically exposed to natural sour gas. Neurosci Lett. 2008;435:65-68. http://dx.doi.org/10.1016/j.neulet.2008.02.008 PMid:18325667

Zendeh-Boodi Z, Saadat M. Genetic polymorphism of GSTT1 may be under natural selection in a population chronically exposed to natural sour gas. Mol Biol Rep. 2008;35:673-676. http://dx.doi.org/10.1007/s11033-007-9139-6 PMid:17874314

Zhou W, Huang G, Zhang H. Effect of methyl tertiary butyl ether on the expression of proto-oncogenes and function genes. Wei Sheng Yan Jiu. 1999;30:137-138.

Badr AA, Saadat I, Saadat M. Study of liver function and expression of some detoxification genes in the male rats exposed to methyl-tertiary butyl ether. Egypt J Med Hum Genet. 2015. doi:10.1016/j.2ejmhg.2015.10.002

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101-1108. http://dx.doi.org/10.1038/nprot.2008.73

Li D, Liu Q, Gong Y, et al. Cytotoxicity and oxidative stress study in cultured rat sertoli cells with methyl tert-butyl ether (MTBE) exposure. Reprod Toxicol. 2009;27:170-176. http://dx.doi.org/10.1016/j.reprotox.2008.12.004 PMid:19150650

Li D, Yuan C, Gong Y, et al. The effects of methyl tert-butyl ether (MTBE) on the male rat reproductive system. Food Chem Toxicol. 2008;46:2402-2408. http://dx.doi.org/10.1016/j.fct.2008.03.024 PMid:18467015

Saify K, Saadat M. Expression patterns of antioxidant genes in human SH-SY5Y cells after treatment with methadone. Psychiatry Res. 2015;230:116-119. http://dx.doi.org/10.1016/j.psychres.2015.08.027 PMid:26321125

Saify K, Saadat I, Saadat M. Down-regulation of antioxidant genes in human SH-SY5Y cells after treatment with morphine. Life Sci. 2015;144:26-29. http://dx.doi.org/10.1016/j.lfs.2015.11.014 PMid:26596265

Published

2016-06-01

How to Cite

1.
Ali Badr A, Saadat M. Expression Levels of Some Detoxification Genes in Liver and Testis of Rats Exposed to a Single Dose of Methyl-Tertiary Butyl Ether. Open Access Maced J Med Sci [Internet]. 2016 Jun. 1 [cited 2024 May 8];4(2):232-5. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2016.057

Issue

Section

A - Basic Science