Genistein Ameliorates Cyclophosphamide - Induced Hepatotoxicity by Modulation of Oxidative Stress and Inflammatory Mediators

Authors

  • Dina F. Mansour Pharmacology Department, Medical Division, National Research Centre, (ID: 60014618), Dokki, Giza
  • Dalia O. Saleh Pharmacology Department, Medical Division, National Research Centre, (ID: 60014618), Dokki, Giza
  • Rasha E. Mostafa Pharmacology Department, Medical Division, National Research Centre, (ID: 60014618), Dokki, Giza

DOI:

https://doi.org/10.3889/oamjms.2017.093

Keywords:

Cyclophosphamide, genistein, interleukin-1β, Myeloperoxidase, Oxidative stress

Abstract

AIM: The present study investigated the protective effect of the phytoestrogen, genistein (GEN), against (CP)-induced acute hepatotoxicity in rats.

MATERIAL AND METHODS: Male adult rats were randomly assigned into five groups. Normal control group received the vehicles; CP group received a single dose of CP (200 mg/kg, i.p). The other three groups received subcutaneous GEN at doses of 0.5, 1 and 2 mg/kg/day, respectively, for 15 consecutive days prior CP injection. Sera and liver tissues were collected forty-eight hours after CP injection for assessment of liver function enzymes (ALT and AST) in rat sera, the hepatic oxidative/nitrosative biomarkers (GSH, MDA and NOx), hepatic interleukin-1β, and myeloperoxidase activity. Immunohistochemistry of cyclooxygenase-2 and histopathological examination of liver tissues were also conducted.

RESULTS: The CP-induced acute liver damage was evidenced by elevated serum ALT and AST accompanied by increased hepatic oxidative stress and inflammatory biomarkers. Immunohistochemical outcomes revealed hepatic cyclooxygenase-2 expression in CP group with distortion of liver architecture. GEN-pretreatment significantly ameliorated the deterioration of liver function and exerted significant anti-oxidant and anti-inflammatory activity with a marked decline in hepatic cyclooxygenase-2 expression in a dose dependent-manner.

CONCLUSION: The present study demonstrated that the antioxidant and anti-inflammatory activities of GEN might contribute to its protective effects against CP-induced liver damage.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Moignet A, Hasanali Z, Zambello R, Pavan L, Bareau B, Tournilhac O, Roussel M, Fest T, Awwad A, Baab K, Semenzato G, Houot R, Loughran TP, Lamy T. Cyclophosphamide as a first-line therapy in LGL leukemia. Leukemia. 2014;28:1134-1136. https://doi.org/10.1038/leu.2013.359 PMid:24280867 PMCid:PMC4017255

Jurado JM, Sanchez A, Pajares B, Perez E, Alonso L, Alba E. Combined oral cyclophosphamide and bevacizumab in heavily pre-treated ovarian cancer. Clinical & translational oncology. 2008;10: 583-586. https://doi.org/10.1007/s12094-008-0254-7

Kim SH, Lee IC, Ko JW, Moon C, Kim SH, Shin IS, Seo YW, Kim HC, Kim JC. Diallyl Disulfide Prevents Cyclophosphamide-Induced Hemorrhagic Cystitis in Rats through the Inhibition of Oxidative Damage, MAPKs, and NF-kappaB Pathways. Biomolecules & therapeutics. 2015; 23: 180-188. https://doi.org/10.4062/biomolther.2014.126 PMid:25767687 PMCid:PMC4354320

Cuce G, Cetinkaya S, Koc T, Esen HH, Limandal C, Balci T, Kalkan S, Akoz M. Chemoprotective effect of vitamin E in cyclophosphamide-induced hepatotoxicity in rats. Chemico-biological interactions. 2015; 232: 7-11. https://doi.org/10.1016/j.cbi.2015.02.016 PMid:25779342

Sinanoglu O, Yener AN, Ekici S, Midi A, Aksungar FB. The protective effects of spirulina in cyclophosphamide induced nephrotoxicity and urotoxicity in rats. Urology. 2012;80(6):1392.e1-6. https://doi.org/10.1016/j.urology.2012.06.053 PMid:22951000

De Jonge ME, Huitema AD, Beijnen JH, Rodenhuis S. High exposures to bioactivated cyclophosphamide are related to the occurrence of veno-occlusive disease of the liver following high-dose chemotherapy. British journal of cancer. 2006;94(9):1226-30. https://doi.org/10.1038/sj.bjc.6603097 PMid:16622453 PMCid:PMC2361415

Habibi E, Shokrzadeh M, Chabra A, Naghshvar F, Keshavarz-Maleki R, Ahmadi A. Protective effects of Origanum vulgare ethanol extract against cyclophosphamide-induced liver toxicity in mice. Pharmaceutical biology. 2015;53(1):10-5. https://doi.org/10.3109/13880209.2014.908399 PMid:25026348

Tsai-Turton M, Luong BT, Tan Y, Luderer U. Cyclophosphamide-induced apoptosis in COV434 human granulosa cells involves oxidative stress and glutathione depletion. Toxicological sciences. 2007;98(1):216-30. https://doi.org/10.1093/toxsci/kfm087 PMid:17434952

Fahmy SR, Amien AI, Abd-Elgleel FM, Elaskalany SM. Antihepatotoxic efficacy of Mangifera indica L. polysaccharides against cyclophosphamide in rats. Chemico-biological interactions. 2016;244:113-20. https://doi.org/10.1016/j.cbi.2015.11.009 PMid:26615121

Nafees S, Rashid S, Ali N, Hasan SK, Sultana S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: role of NFκB/MAPK pathway. Chemico-biological interactions. 2015;231:98-107. https://doi.org/10.1016/j.cbi.2015.02.021 PMid:25753322

El-Sheikh AA, Rifaai RA. Peroxisome proliferator activator receptor (PPAR)-γ ligand, but not PPAR-α, ameliorates cyclophosphamide-induced oxidative stress and inflammation in rat liver. PPAR research. 2014;2014.

Lata S, Singh S, NathTiwari K, Upadhyay R. Evaluation of the antioxidant and hepatoprotective effect of Phyllanthus fraternus against a chemotherapeutic drug cyclophosphamide. Applied biochemistry and biotechnology. 2014;173(8):2163-73. https://doi.org/10.1007/s12010-014-1018-8 PMid:24993488

Zarei M, Shivanandappa T. Amelioration of cyclophosphamide-induced hepatotoxicity by the root extract of Decalepis hamiltonii in mice. Food and chemical toxicology. 2013;57:179-84. https://doi.org/10.1016/j.fct.2013.03.028 PMid:23542512

Marinello AJ, Gurtoo HL, Struck RF, Paul B. Denaturation of cytochrome P-450 by cyclophosphamide metabolites. Biochemical and biophysical research communications. 1978;83(4):1347-53. https://doi.org/10.1016/0006-291X(78)91369-4

Zhu H, Long MH, Wu J, Wang MM, Li XY, Shen H, Xu JD, Zhou L, Fang ZJ, Luo Y, Li SL. Ginseng alleviates cyclophosphamide-induced hepatotoxicity via reversing disordered homeostasis of glutathione and bile acid. Scientific reports. 2015;5:17536. https://doi.org/10.1038/srep17536 PMid:26625948 PMCid:PMC4667192

Souid AK, Tacka KA, Galvan KA, Penefsky HS. Immediate effects of anticancer drugs on mitochondrial oxygen consumption. Biochemical pharmacology. 2003;66(6):977-87. https://doi.org/10.1016/S0006-2952(03)00418-0

Kim HG, Yoon DH, Lee WH, Han SK, Shrestha B, Kim CH, Lim MH, Chang W, Lim S, Choi S, Song WO. Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-κB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage. Journal of ethnopharmacology. 2007;114(3):307-15. https://doi.org/10.1016/j.jep.2007.08.011 PMid:17936530

Haque R, Bin-Hafeez B, Ahmad I, Parvez S, Pandey S, Raisuddin S. Protective effects of Emblica officinalis Gaertn. in cyclophosphamide-treated mice. Human & experimental toxicology. 2001;20(12):643-50. https://doi.org/10.1191/096032701718890568 PMid:11936579

Kumar KB, Kuttan R. Chemoprotective activity of an extract of Phyllanthus amarus against cyclophosphamide induced toxicity in mice. Phytomedicine. 2005;12(6):494-500. https://doi.org/10.1016/j.phymed.2004.03.009 PMid:16008127

Sharma N, Trikha P, Athar M, Raisuddin S. Inhibitory effect of Emblica officinals on the in vivo clastogenicity of benzo alpyrene and acyclophosphamide in mice. Human & experimental toxicology. 2000;19(6):377-84. https://doi.org/10.1191/096032700678815945 PMid:10962512

Verdrengh M, Jonsson IM, Holmdahl R, Tarkowski A. Genistein as an anti-inflammatory agent. Inflammation Research. 2003;52(8):341-6. https://doi.org/10.1007/s00011-003-1182-8 PMid:14504672

Ogbuewu IP, Uchegbu MC, Emenalom OO, Okoli IC, Iloeje MU. Overview of the chemistry of soy isoflavones, potential threats and potential therapeutic benefits. Electronic Journal of Environmental, Agricultural & Food Chemistry. 2010;9(4).

Ganai AA, Khan AA, Malik ZA, Farooqi H. Genistein modulates the expression of NF-κB and MAPK (p-38 and ERK1/2), thereby attenuating d-Galactosamine induced fulminant hepatic failure in Wistar rats. Toxicology and applied pharmacology. 2015;283(2):139-46. https://doi.org/10.1016/j.taap.2015.01.012 PMid:25620059

Borrás C, Gambini J, Gómez-Cabrera MC, Sastre J, Pallardó FV, Mann GE, Vi-a J. Genistein, a soy isoflavone, up-regulates expression of antioxidant genes: involvement of estrogen receptors, ERK1/2, and NFκB. The FASEB Journal. 2006;20(12):2136-8. https://doi.org/10.1096/fj.05-5522fje PMid:16966488

Saleh DO, El-Awdan SA, Nofel SM, El-Eraky WI, El-Khatib AS, Kenawy SA. Estrogens improve the cardiovascular alterations in fructose-induced insulin resistant ovariectomized rats. International Journal of Pharmacy and Pharmaceutical Sciences. 2015;7(7):241-7.

Kuzu N, Metin K, Dagli AF, Akdemir F, Orhan C, Yalniz M, Ozercan IH, Sahin K, Bahcecioglu IH. Protective role of genistein in acute liver damage induced by carbon tetrachloride. Mediators of inflammation. 2007;2007.

Saleh DO, Abdel Jaleel GA, El-Awdan SA, Oraby F, Badawi M. Thioacetamide-induced liver injury: protective role of genistein. Canadian journal of physiology and pharmacology. 2014;92(11):965-73. https://doi.org/10.1139/cjpp-2014-0192 PMid:25358106

Vera R, Galisteo M, Villar IC, Sanchez M, Zarzuelo A, Pérez-Vizcaíno F, Duarte J. Soy isoflavones improve endothelial function in spontaneously hypertensive rats in an estrogen-independent manner: role of nitric-oxide synthase, superoxide, and cyclooxygenase metabolites. Journal of Pharmacology and Experimental Therapeutics. 2005;314(3):1300-9. https://doi.org/10.1124/jpet.105.085530 PMid:15958720

Saleh DO, Mansour DF. Ovario-protective effects of genistein against cyclophosphamide toxicity in rats: Role of anti-müllerian hormone and oestradiol. European journal of pharmacology. 2016;789:163-71. https://doi.org/10.1016/j.ejphar.2016.07.026 PMid:27448503

Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American journal of clinical pathology. 1957;28(1):56-63. https://doi.org/10.1093/ajcp/28.1.56 PMid:13458125

Beutler E. Improved method for determination of blood glutathione. J Lab Clin Med. 1963;61(5):882-8. PMid:13967893

Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical biochemistry. 1978;86(1):271-8. https://doi.org/10.1016/0003-2697(78)90342-1

Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric oxide. 2001;5(1):62-71. https://doi.org/10.1006/niox.2000.0319 PMid:11178938

Roelofs JJ, Rouschop KM, Leemans JC, Claessen N, de Boer AM, Frederiks WM, Lijnen HR, Weening JJ, Florquin S. Tissue-type plasminogen activator modulates inflammatory responses and renal function in ischemia reperfusion injury. Journal of the American society of nephrology. 2006;17(1):131-40. https://doi.org/10.1681/ASN.2005010089 PMid:16291841

Bancroft J, Stevens A, Turner D. Theory and practice of histological techniques: Churchill Livingstone New York. the text, 1996:766.

Weijl N, Cleton F, Osanto S. Free radicals and antioxidants in chemotherapyinduced toxicity. Cancer treatment reviews. 1997; 23:209-240. https://doi.org/10.1016/S0305-7372(97)90012-8

Subramaniam SR, Cader RA, Mohd R, Yen KW, Ghafor HA. Low-dose cyclophosphamide-induced acute hepatotoxicity. The American journal of case reports. 2013;14:345. https://doi.org/10.12659/AJCR.889401 PMid:24023976 PMCid:PMC3767583

Yogalakshmi B, Viswanathan P, Anuradha CV. Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats. Toxicology. 2010;268(3):204-12. https://doi.org/10.1016/j.tox.2009.12.018 PMid:20036707

Senthilkumar S, Devaki T, Manohar BM, Babu MS. Effect of squalene on cyclophosphamide-induced toxicity. Clinica Chimica Acta. 2006;364(1):335-42. https://doi.org/10.1016/j.cca.2005.07.032 PMid:16150433

Podrez EA, Abu-Soud HM, Hazen SL. Myeloperoxidase-generated oxidants and atherosclerosis. Free Radical Biology and Medicine. 2000;28(12):1717-25. https://doi.org/10.1016/S0891-5849(00)00229-X

Rao AM, Anand U, Anand CV. Myeloperoxidase in chronic kidney disease. Indian Journal of Clinical Biochemistry. 2011;26(1):28-31. https://doi.org/10.1007/s12291-010-0075-1 PMid:22211010 PMCid:PMC3068762

Fouad AA, Qutub HO, Al-Melhim WN. Punicalagin alleviates hepatotoxicity in rats challenged with cyclophosphamide. Environmental toxicology and pharmacology. 2016;45:158-62. https://doi.org/10.1016/j.etap.2016.05.031 PMid:27310207

Ghosh S, Hayden MS. New regulators of NF-κB in inflammation. Nature Reviews Immunology. 2008;8(11):837-48. https://doi.org/10.1038/nri2423 PMid:18927578

Jnaneshwari S, Hemshekhar M, Thushara RM, Shanmuga Sundaram M, Sebastin Santhosh M, Sunitha K, Shankar RL, Kemparaju K, Girish KS. Sesamol ameliorates cyclophosphamide-induced hepatotoxicity by modulating oxidative stress and inflammatory mediators. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2014;14(7):975-83.

Lau DT, Luxon BA, Xiao SY, Beard MR, Lemon SM. Intrahepatic gene expression profiles and alphaâ€smooth muscle actin patterns in hepatitis C virus induced fibrosis. Hepatology. 2005;42(2):273-81. https://doi.org/10.1002/hep.20767 PMid:15986378

Rimbach G, De Pascual-Teresa S, Ewins BA, Matsugo S, Uchida Y, Minihane AM, Turner R, Vafei Adou K, Weinberg PD. Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica. 2003;33(9):913-25. https://doi.org/10.1080/0049825031000150444 PMid:14514441

Aneja R, Upadhyaya G, Prakash S, Dass SK, Chandra R. Ameliorating effect of phytoestrogens on CCl4-induced oxidative stress in the livers of male Wistar rats. Artificial cells, blood substitutes, and biotechnology. 2005;33(2):201-13. https://doi.org/10.1081/BIO-200055908

Lee JS. Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats. Life sciences. 2006;79(16):1578-84. https://doi.org/10.1016/j.lfs.2006.06.030 PMid:16831449

Wei H, Bowen R, Cai Q, Barnes S, Wang Y. Antioxidant and antipromotional effects of the soybean isoflavone genistein. Proceedings of the Society for Experimental Biology and Medicine. 1995;208(1):124-30. https://doi.org/10.3181/00379727-208-43844 PMid:7892286

Huang Q, Huang R, Zhang S, Lin J, Wei L, He M, Zhuo L, Lin X. Protective effect of genistein isolated from Hydrocotyle sibthorpioides on hepatic injury and fibrosis induced by chronic alcohol in rats. Toxicology letters. 2013;217(2):102-10. https://doi.org/10.1016/j.toxlet.2012.12.014 PMid:23274713

Mizutani K, Ikeda K, Nishikata T, Yamori Y. Phytoestrogens attenuate oxidative DNA damage in vascular smooth muscle cells from strokeâ€prone spontaneously hypertensive rats. Journal of hypertension. 2000;18(12):1833-40. https://doi.org/10.1097/00004872-200018120-00018 PMid:11132608

Yalniz M, Bahcecioglu IH, Kuzu N, Poyrazoglu OK, Bulmus O, Celebi S, Ustundag B, Ozercan IH, Sahin K. Preventive role of genistein in an experimental nonâ€alcoholic steatohepatitis model. Journal of gastroenterology and hepatology. 2007;22(11):2009-14. https://doi.org/10.1111/j.1440-1746.2006.04681.x PMid:17914984

Wang J, Mazza G. Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-γ-activated RAW 264.7 macrophages. Journal of Agricultural and Food Chemistry. 2002;50(4):850-7. https://doi.org/10.1021/jf010976a PMid:11829656

Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators of inflammation. 2007;2007.

Guo Q, Rimbach G, Packer L. Nitric oxide formation in macrophages detected by spin trapping with iron-dithiocarbamate complex: effect of purified flavonoids and plant extracts. Methods in enzymology. 2001;335:273-82. https://doi.org/10.1016/S0076-6879(01)35250-3

Published

2017-11-01

How to Cite

1.
Mansour DF, Saleh DO, Mostafa RE. Genistein Ameliorates Cyclophosphamide - Induced Hepatotoxicity by Modulation of Oxidative Stress and Inflammatory Mediators. Open Access Maced J Med Sci [Internet]. 2017 Nov. 1 [cited 2024 Apr. 26];5(7):836-43. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2017.093

Issue

Section

A - Basic Science