Preclinical Assessment of the Proliferation Capacity of Gingival and Periodontal Ligament Stem Cells from Diabetic Patients
DOI:
https://doi.org/10.3889/oamjms.2018.076Keywords:
Proliferation, Survivin, Gingival Stem cells, Periodontal Ligament Stem Cells, DiabetesAbstract
BACKGROUND: Stem cells have recently received great interest as potential therapeutics alternative for a variety of diseases. The oral and maxillofacial region, in particular, encompasses a variety of distinctive mesenchymal (MSC) populations and is characterized by a potent multilineage differentiation capacity.
AIM: In this report, we aimed to investigate the effect of diabetes on the proliferation potential of stem cells isolated from controlled diabetic patients (type 2) and healthy individuals.
SUBJECTS & METHODS: The proliferation rate of gingival and periodontal derived stem cells isolated from diabetic & healthy individuals were compared using MTT Assay. Expression levels of Survivin in isolated stem cells from all groups were measured by qRt - PCR.
RESULTS: There was a significantly positive correlation between proliferation rate and expression of Survivin in all groups which sheds light on the importance of Survivin as a reliable indicator of proliferation. The expression of Survivin further confirmed the proliferation results from MTT Assay where the expression of stem cells from non - diabetic individuals was higher than diabetic patients. Conclusion: Taking together all the results, it could be concluded that PDLSC and GSC are promising candidates for autologous regenerative therapy due to their ease of accessibility in addition to their high proliferative rates.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Zhang Q, Shi S, Liu Y, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol. 2009;183(12):7787-7798. https://doi.org/10.4049/jimmunol.0902318 PMid:19923445 PMCid:PMC2881945
Fournier BP, Ferre FC, Couty L, et al. Multipotent progenitor cells in gingival connective tissue. Tissue Eng Part A. 2010; 16(9):2891-2899. https://doi.org/10.1089/ten.tea.2009.0796 PMid:20412029
Mitrano TI, Grob MS, Carrion F, et al. Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol. 2010; 81(6):917-925. https://doi.org/10.1902/jop.2010.090566 PMid:20450355
Su WR, Zhang QZ, Shi SH, Nguyen AL, Le AD. Human gingiva-derived mesenchymal stromal cells attenuate contact hypersensitivity via prostaglandin E2-dependent mechanisms. Stem Cells. 2011; 29(11):1849-1860. https://doi.org/10.1002/stem.738 PMid:21987520
Tang L, Li N, Xie H, Jin Y. Characterization of mesenchymal stem cells from human normal and hyperplastic gingiva. J Cell Physiol. 2011; 226(3):832-842. https://doi.org/10.1002/jcp.22405 PMid:20857425
Hermann A, Liebau S, Gastl R, et al. Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. J Neurosci Res. 2006; 83(8):1502-1514. https://doi.org/10.1002/jnr.20840 PMid:16612831
Kuroda Y, Kitada M, Wakao S, et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A. 2010; 107(19):8639-8643. https://doi.org/10.1073/pnas.0911647107 PMid:20421459 PMCid:PMC2889306
Tomar GB, Srivastava RK, Gupta N, et al. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun. 2010; 393(3):377-383. https://doi.org/10.1016/j.bbrc.2010.01.126 PMid:20138833
Yamamoto N, Maeda H, Tomokiyo A, et al. Expression and effects of glial cell line- derived neurotrophic factor on periodontal ligament cells. J Clin Periodontol. 2012; 39(6):556-564. https://doi.org/10.1111/j.1600-051X.2012.01881.x PMid:22512503
Shi S, Bartold PM, Miura M, et al. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res. 2005; 8(3):191-199. https://doi.org/10.1111/j.1601-6343.2005.00331.x PMid:16022721
Ikeda H, Sumita Y, Ikeda M, et al. Engineering bone formation from human dental pulp- and periodontal ligament-derived cells. Ann Biomed Eng. 2011; 39(1):26-34. https://doi.org/10.1007/s10439-010-0115-2 PMid:20614244
Fawzy El-Sayed KM, Paris S, Becker ST, et al. Periodontal regeneration employing gingival margin-derived stem/progenitor cells: an animal study. J Clin Periodontol. 2012; 39(9):861-870. https://doi.org/10.1111/j.1600-051X.2012.01904.x PMid:22694281
Wang F, Yu M, Yan X, et al. Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration. Stem Cells Dev. 2011; 20(12):2093- 2102. https://doi.org/10.1089/scd.2010.0523 PMid:21361847
Weinberg E, Maymon T, Weinreb M. AGEs induce caspase-mediated apoptosis of rat BMSCs via TNFα production and oxidative stress. J Mol Endocrinol. 2013; 52(1):67-76.
Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011; 11(2):98-107. https://doi.org/10.1038/nri2925 PMid:21233852
Chen J, Song M, Yu S, et al. Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress. Mol Cell Biochem. 2010; 335(1- 2):137-146.
Weinberg E, Maymon T, Weinreb M. AGEs induce caspase-mediated apoptosis of rat BMSCs via TNFalpha production and oxidative stress. J Mol Endocrinol. 2014; 52(1):67- 76. PMid:24198288
Rodrigues M, Wong VW, Rennert RC, Davis CR, Longaker MT, Gurtner GC. Progenitor Cell Dysfunctions Underlie Some Diabetic Complications. Am J Pathol. 2015. https://doi.org/10.1016/j.ajpath.2015.05.003 PMCid:PMC4607762
Cianfarani F, Toietta G, Di Rocco G, Cesareo E, Zambruno G, Odorisio T. Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing. Wound Repair Regen. 2013; 21(4):545-553. https://doi.org/10.1111/wrr.12051 PMid:23627689
Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011; 11(2):98-107. https://doi.org/10.1038/nri2925 PMid:21233852
Russo V, Yu C, Belliveau P, Hamilton A, Flynn LE. Comparison of human adipose- derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications. Stem Cells Transl Med. 2014; 3(2):206-217. https://doi.org/10.5966/sctm.2013-0125 PMid:24361924 PMCid:PMC3925056
Ju L, Zhang X, Deng Y, et al. Enhanced expression of Survivin has distinct roles in adipocyte homeostasis. Cell Death Dis. 2017;8(1):e2533. https://doi.org/10.1038/cddis.2016.439
Ghorbani A, Mojarrad M, Hatami A, Hoseini S, Ghazavi H, Hosseini A. Effects of Streptozotocin-Induced Diabetes on Proliferation and Differentiation Abilities of Mesenchymal Stem Cells Derived from Subcutaneous and Visceral Adipose Tissues. Exp Clin Endocrinol Diabetes. 2016;125(1):33-41. https://doi.org/10.1055/s-0042-113460
Rennert RC, Sorkin M, Januszyk M, et al. Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Ther. 2014;5(3):79. https://doi.org/10.1186/scrt468
Gao Y, Zhao G, Li D, Chen X, Pang J, Ke J. Isolation and multiple differentiation potential assessment of human gingival mesenchymal stem cells. Int J Mol Sci. 2014;15(11):20982-20996. https://doi.org/10.3390/ijms151120982
American Diabetes Association. Standards of Medical Care in Diabetes-2016 Abridged for Primary Care Providers. Clin Diabetes. 2016;34(1):3-21. https://doi.org/10.2337/diaclin.34.1.3
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34 Suppl 1:S62-9. https://doi.org/10.2337/dc11-S062
Jumabay M, Moon JH, Yeerna H, Bostr??m KI. Effect of Diabetes Mellitus on Adipocyte-Derived Stem Cells in Rat. J Cell Physiol. 2015;230(11):2821-2828. https://doi.org/10.1002/jcp.25012
Wang F, Yu M, Yan X, et al. Gingiva-Derived Mesenchymal Stem Cell-Mediated Therapeutic Approach for Bone Tissue Regeneration. Stem Cells Dev. 2011;20(12):2093-2102. https://doi.org/10.1089/scd.2010.0523
Tsumanuma Y, Iwata T, Washio K, et al. Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model. Biomaterials. 2011;32(25):5819-5825. https://doi.org/10.1016/j.biomaterials.2011.04.071
Iwata T, Yamato M, Tsuchioka H, et al. Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model. Biomaterials. 2009;30(14):2716-2723. https://doi.org/10.1016/j.biomaterials.2009.01.032
Yang H, Gao L-N, An Y, et al. Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials. 2013;34(29):7033-7047. https://doi.org/10.1016/j.biomaterials.2013.05.025
Tang L, Li N, Xie H, Jin Y. Characterization of mesenchymal stem cells from human normal and hyperplastic gingiva. J Cell Physiol. 2011;226(3):832-842. https://doi.org/10.1002/jcp.22405
Otabe K, Muneta T, Kawashima N, Suda H, Tsuji K, Sekiya I. Comparison of Gingiva, Dental Pulp, and Periodontal Ligament Cells from the Standpoint of Mesenchymal Stem Cell Properties. Cell Med. 2012;4(1):13-22. https://doi.org/10.3727/215517912X653319
Stolzing A, Sellers D, Llewelyn O, Scutt A. Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs. 2010;191(6):453-465. https://doi.org/10.1159/000281826
Xu T, Zhong L, Gan L, et al. Effects of LG268 on Cell Proliferation and Apoptosis of NB4 Cells. Int J Med Sci. 2016;13(7):517-523. https://doi.org/10.7150/ijms.15507
Downloads
Published
How to Cite
Issue
Section
License
http://creativecommons.org/licenses/by-nc/4.0