Classification of Radiological Changes in Burst Fractures
DOI:
https://doi.org/10.3889/oamjms.2018.094Keywords:
Burst fracture, Classification, Neurological deficit, Pediculolaminar junction, Secondary organ injuryAbstract
AIM: Burst fractures can occur with different radiological images after high energy. We aimed to simplify radiological staging of burst fractures.
METHODS: Eighty patients whom exposed spinal trauma and had burst fracture were evaluated concerning age, sex, fracture segment, neurological deficit, secondary organ injury and radiological changes that occurred.
RESULTS: We performed a new classification in burst fractures at radiological images.
CONCLUSIONS: According to this classification system, secondary organ injury and neurological deficit can be an indicator of energy exposure. If energy is high, the clinical status will be worse. Thus, we can get an idea about the likelihood of neurological deficit and secondary organ injuries. This classification has simplified the radiological staging of burst fractures and is a classification that gives a very accurate idea about the neurological condition.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Deng Z, Zou H, Cai L, Ping A, Wang Y, Ai Q. The retrospective analysis of posterior short-segment pedicle instrumentation without fusion for thoracolumbar burst fracture with neurological deficit. The Scientific World Journal. 2014;2014.
Fu CG, Liu GH, Song ZC. Damage control orthopaedics of thoracolumbar burst fracture complicated with severe polytrauma. Zhongguo Gu Shang. 2009; 22(7):499-500. PMid:19705707
Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J. 1994; 3:184-201. https://doi.org/10.1007/BF02221591 PMid:7866834
Vaccaro AR, Lehman RA, Hurlbert RJ, et al. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine. 2005; 30: 2325-33. https://doi.org/10.1097/01.brs.0000182986.43345.cb PMid:16227897
American Spinal Injury Association. International standards for neurological and functional classification of spinal cord injury. Chicago, USA, 1996.
Kemper AC, Mirza S, Mann FA. Subtle radiographic findings in an unstable pediculolaminar fracture. AJR. American journal of roentgenology. 1999; 172(5):1234. https://doi.org/10.2214/ajr.172.5.10227494 PMid:10227494
Cotterill PC, Kostuik JP, Wilson JA, Fernie GR, Maki BE. Production of a reproducible spinal burst fracture for use in biomechanical testing. J Orthop Res. 1987; 5:462–465. https://doi.org/10.1002/jor.1100050319 PMid:3625368
Cammisa FP, Eismont FJ, Green BA. Dural laceration is occurring with burst fractures and associated laminar fractures. J Bone Joint Surg. 1989; 71:1044–52. https://doi.org/10.2106/00004623-198971070-00011 PMid:2760080
Hashimoto T, Kaneda K, Abumi K. Relationship between traumatic spinal canal stenosis and neurologic deï¬cits in thoracolumbar burst fractures. Spine. 1988; 13:1268–72. https://doi.org/10.1097/00007632-198811000-00011 PMid:3206286
Keene JS, Wackwitz DL, Drummond DS, Breed AL. Compression-distraction instrumentation of unstable thoracolumbar fractures: anatomic results obtained with each type of injury and method of instrumentation. Spine. 1986; 11:895–902. https://doi.org/10.1097/00007632-198611000-00009 PMid:3824067
McAfee PC, Yuan HA, Lasda NA. The unstable burst fracture. Spine. 1982; 7:365–73. https://doi.org/10.1097/00007632-198207000-00007 PMid:7135069
Petersilge CA, Pathria MN, Emery SE, Masaryk TJ. Thoracolumbar burst fractures: evaluation with MR imaging. Radiology. 1995; 194: 49–54. https://doi.org/10.1148/radiology.194.1.7997581 PMid:7997581
Aebi M, Etter C, Kehl T, Thalgott J. Stabilization of the lower thoracic and lumbar spine with the internal spinal skeletal ï¬xation system. Indications, techniques, and ï¬rst results of treatment. Spine. 1987; 12:544–51. https://doi.org/10.1097/00007632-198707000-00007 PMid:3660081
Silvestro C, Francaviglia N, Bragazzi R, Viale GL. Near-anatomical reduction and stabilization of burst fractures of the lower thoracic or lumbar spine. Acta Neurochir. 1992; 116:53–59. https://doi.org/10.1007/BF01541254 PMid:1615770
Sjostrom L, Karlstrom G, Pech P, Rauschning W. Indirect spinal canal decompression in burst fractures treated with pedicle screw instrumentation. Spine. 1996; 21:113–23. https://doi.org/10.1097/00007632-199601010-00026 PMid:9122751
Trafton PG, Boyd Jr CA. Computed tomography of thoracic and lumbar spine injuries. J Trauma. 1984; 24:506–15. https://doi.org/10.1097/00005373-198406000-00008
Willen JA, Gaekwad UH, Kakulas BA. Acute burst fractures: A comparative analysis of a modern fracture classiï¬cation and pathologic ï¬ndings. ClinOrthop. 1992; 276:169–75. PMid:1537147
Hu Z, Zhou Y, Li N, Xie X. Correlations between posterior longitudinal ligament status and size of bone fragment in thoracolumbar burst fractures. International journal of clinical and experimental medicine. 2015; 8(2):2754. PMid:25932230 PMCid:PMC4402877
Dai J, Lin H, Niu S,et al. Correlation of bone fragments reposition and related parameters in thoracolumbar burst fractures patients. Int J Clin Exp Med. 2015; 8(7):11125. PMid:26379913 PMCid:PMC4565296
Herndon WA1, Galloway D. Neurologic return versus cross-sectional canal area in incomplete thoracolumbar spinal cord injuries. J Trauma.1988; 28(5):680-83. https://doi.org/10.1097/00005373-198805000-00022
Lee IS1, Kim HJ, Lee JS, et al. Dural tears in spinal burst fractures: predictable MR imaging findings. Am J Neuroradiol. 2009; 30(1):142-6. PMid:18768720
Downloads
Published
How to Cite
Issue
Section
License
http://creativecommons.org/licenses/by-nc/4.0