The Effect of Lower and Higher Calorie Meal on the Parameters of Ventricular Repolarization in Healthy Subjects
DOI:
https://doi.org/10.3889/oamjms.2019.084Keywords:
meal consumption, ventricular repolarization, high calorie intakeAbstract
BACKGROUND: Cardiovascular modulation following meal consumption has been known. Little and conflicting data is present regarding electrocardiographic QT and QTc intervals after a meal, and status of ventricular repolarization following meal is not known comprehensively.
AIM: To inquire the electrocardiographic status of ventricular repolarisation thoroughly after lower and higher calorie meal consumption in a comparative manner.
METHODS: A group of 61 healthy individuals were studied before and after lunch. They were divided into two groups according to the calorie consumed (higher calorie and lower calorie; median 1580 and 900 kcals, respectively). Calorie consumed was estimated using dietary guidelines. Data was collected from 12-lead ECG both in a fasted state and 2nd postprandial hour for each participant. Parameters of ventricular repolarization, namely, JTp, Tp-e, QT, QTc intervals and their ratios, as well as RR intervals, were compared between fasted and postprandial states for every participant.
RESULTS: Tp-e and QTc intervals, and Tp-e/QTc ratio do not significantly change after both higher- and lower-calorie meals. JTp and QT intervals significantly shorten in both groups, regardless of the calorie consumed. While JTp shows a positive correlation with RR interval both before and after a meal in lower calorie intake group, no correlation was found with RR interval after a meal in higher calorie group. Logistic regression analysis revealed that higher calorie intake during a meal is a predictor for greater shortening in JTp and QT, compared to lower calorie meal.
CONCLUSION: Our study may guide future studies on ventricular repolarisation, particularly those conducted on various disease conditions or drug effect of cardiac electrophysiology.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Moneta GL, Taylor DC, Helton WS, et al. Duplex ultrasound measurement of postprandial intestinal blood flow: effect of meal composition. Gastroenterology. 1988; 95(5):1294-1301. https://doi.org/10.1016/0016-5085(88)90364-2 DOI: https://doi.org/10.1016/0016-5085(88)90364-2
Kelbaek H, Munck O, Christensen NJ, Godtfredsen J. Central haemodynamic changes after a meal. Br Heart J. 1989; 61(6):506-509. https://doi.org/10.1136/hrt.61.6.506 PMid:2757863 PMCid:PMC1216707 DOI: https://doi.org/10.1136/hrt.61.6.506
Hlebowicz J, Lindstedt S, Bjorgell O, Dencker M. Relationship between postprandial changes in cardiac left ventricular function, glucose and insulin concentrations, gastric emptying, and satiety in healthy subjects. Nutr J. 2011; 10:26. https://doi.org/10.1186/1475-2891-10-26 PMid:21429209 PMCid:PMC3075212 DOI: https://doi.org/10.1186/1475-2891-10-26
Sidery MB, Macdonald IA. The effect of meal size on the cardiovascular responses to food ingestion. Br J Nutr. 1994; 71(6):835-848. https://doi.org/10.1079/BJN19940190 DOI: https://doi.org/10.1079/BJN19940190
Gastaldelli A, Emdin M, Conforti F, Camastra S, et al. Insulin prolongs the QTc interval in humans. Am J Physiol Regul Integr Comp Physiol. 2000; 279(6):R2022-2025. https://doi.org/10.1152/ajpregu.2000.279.6.R2022 PMid:11080065 DOI: https://doi.org/10.1152/ajpregu.2000.279.6.R2022
Dekker JM, Feskens EJ, Schouten EG, et al. QTc duration is associated with levels of insulin and glucose intolerance. The Zutphen Elderly Study. Diabetes. 1996; 45(3):376-380. https://doi.org/10.2337/diab.45.3.376 PMid:8593946 DOI: https://doi.org/10.2337/diabetes.45.3.376
Keren A, Tzivoni D, Gavish D, et al. Etiology, warning signs and therapy of torsade de pointes. A study of 10 patients. Circulation. 1981; 64(6):1167-1174. https://doi.org/10.1161/01.CIR.64.6.1167 PMid:7296791 DOI: https://doi.org/10.1161/01.CIR.64.6.1167
Algra A, Tijssen JG, Roelandt JR, et al. QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation. 1991; 83(6):1888-1894. https://doi.org/10.1161/01.CIR.83.6.1888 PMid:2040041 DOI: https://doi.org/10.1161/01.CIR.83.6.1888
Wheelan K, Mukharji J, Rude RE, et al. Sudden death and its relation to QT-interval prolongation after acute myocardial infarction: two-year follow-up. Am J Cardiol. 1986; 57(10):745-750. https://doi.org/10.1016/0002-9149(86)90606-5 DOI: https://doi.org/10.1016/0002-9149(86)90606-5
Kors JA, Ritsema van Eck HJ, van Herpen G. The meaning of the Tp-Te interval and its diagnostic value. J Electrocardiol. 2008; 41(6):575-580. https://doi.org/10.1016/j.jelectrocard.2008.07.030 PMid:18954608 DOI: https://doi.org/10.1016/j.jelectrocard.2008.07.030
Sokmen E, Ozbek SC, Celik M, et al. Changes in the parameters of ventricular repolarization during preapnea, apnea, and postapnea periods in patients with obstructive sleep apnea. Pacing Clin Electrophysiol. 2018. https://doi.org/10.1111/pace.13365 PMid:29726590 DOI: https://doi.org/10.1111/pace.13365
Castro-Torres Y, Carmona-Puerta R, Katholi RE. Ventricular repolarization markers for predicting malignant arrhythmias in clinical practice. World J Clin Cases. 2015; 3(8):705-720. https://doi.org/10.12998/wjcc.v3.i8.705 PMid:26301231 PMCid:PMC4539410 DOI: https://doi.org/10.12998/wjcc.v3.i8.705
Panikkath R, Reinier K, Uy-Evanado A, et al. Prolonged Tpeak-to-tend interval on the resting ECG is associated with increased risk of sudden cardiac death. Circ Arrhythm Electrophysiol. 2011; 4(4):441-447. https://doi.org/10.1161/CIRCEP.110.960658 PMid:21593198 PMCid:PMC3157547 DOI: https://doi.org/10.1161/CIRCEP.110.960658
Sciot B, Vandenberk B, Huijghebaert S, et al. Influence of food intake on the QT and QT/RR relation. J Electrocardiol. 2016; 49(5):720-727. https://doi.org/10.1016/j.jelectrocard.2016.06.009 PMid:27421698 DOI: https://doi.org/10.1016/j.jelectrocard.2016.06.009
Nagy D, DeMeersman R, Gallagher D, et al. QTc interval (cardiac repolarization): lengthening after meals. Obes Res. 1997; 5(6):531-537. https://doi.org/10.1002/j.1550-8528.1997.tb00573.x PMid:9449136 DOI: https://doi.org/10.1002/j.1550-8528.1997.tb00573.x
Hnatkova K, Kowalski D, Keirns JJ, et al. QTc changes after meal intake: sex differences and correlates. J Electrocardiol. 2014; 47(6):856-862. https://doi.org/10.1016/j.jelectrocard.2014.07.026 PMid:25173631 DOI: https://doi.org/10.1016/j.jelectrocard.2014.07.026
Taubel J, Wong AH, Naseem A, et al. Shortening of the QT interval after food can be used to demonstrate assay sensitivity in thorough QT studies. J Clin Pharmacol. 2012; 52(10):1558-1565. https://doi.org/10.1177/0091270011419851 PMid:22067197 DOI: https://doi.org/10.1177/0091270011419851
Widerlov E, Jostell KG, Claesson L, et al. Influence of food intake on electrocardiograms of healthy male volunteers. Eur J Clin Pharmacol. 1999; 55(9):619-624. https://doi.org/10.1007/s002280050682 PMid:10638388 DOI: https://doi.org/10.1007/s002280050682
Cirincione B, Sager PT, Mager DE. Influence of Meals and Glycemic Changes on QT Interval Dynamics. J Clin Pharmacol. 2017; 57(8):966-976. https://doi.org/10.1002/jcph.933 PMid:28543601 PMCid:PMC5518218 DOI: https://doi.org/10.1002/jcph.933
Harris JA, Benedict FG. A Biometric Study of Human Basal Metabolism. Proc Natl Acad Sci U S A. 1918; 4(12):370-373. https://doi.org/10.1073/pnas.4.12.370 DOI: https://doi.org/10.1073/pnas.4.12.370
Baecke JA, Burema J, Frijters JE. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr. 1982; 36(5):936-942. https://doi.org/10.1093/ajcn/36.5.936 PMid:7137077 DOI: https://doi.org/10.1093/ajcn/36.5.936
Turkey Dietary Guidelines. Ministry of Health of Turkey Publication No: 1046, Ankara, 2016.
Zabel M, Lichtlen PR, Haverich A, Franz MR. Comparison of ECG variables of dispersion of ventricular repolarization with direct myocardial repolarization measurements in the human heart. J Cardiovasc Electrophysiol. 1998; 9(12):1279-1284. https://doi.org/10.1111/j.1540-8167.1998.tb00103.x PMid:9869527 DOI: https://doi.org/10.1111/j.1540-8167.1998.tb00103.x
Cowan JC, Yusoff K, Moore M, et al. Importance of lead selection in QT interval measurement. Am J Cardiol. 1988; 61(1):83-87. https://doi.org/10.1016/0002-9149(88)91309-4 DOI: https://doi.org/10.1016/0002-9149(88)91309-4
Alvarado-Serrano C, Ramos-Castro J, Pallà s-Areny R. Do ventricular repolarization interval ratios depend on heart rate and should they be rate-corrected? In Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE. 2003; 1:59-61. IEEE. https://doi.org/10.1109/IEMBS.2003.1279507 DOI: https://doi.org/10.1109/IEMBS.2003.1279507
Charbit B, Samain E, Merckx P, Funck-Brentano C. QT interval measurement: evaluation of automatic QTc measurement and new simple method to calculate and interpret corrected QT interval. Anesthesiology. 2006; 104(2):255-260. https://doi.org/10.1097/00000542-200602000-00009 PMid:16436843 DOI: https://doi.org/10.1097/00000542-200602000-00009
Salles GF, Cardoso CR, Leocadio SM, Muxfeldt ES. Recent ventricular repolarization markers in resistant hypertension: are they different from the traditional QT interval? Am J Hypertens. 2008; 21(1):47-53. https://doi.org/10.1038/ajh.2007.4 PMid:18091743 DOI: https://doi.org/10.1038/ajh.2007.4
Bazett HC. An analysis of the time relations of electrocardiograms. Heart. 1920; 7:353-70.
Hnatkova K, Johannesen L, Vicente J, Malik M. Heart rate dependency of JT interval sections. J Electrocardiol. 2017; 50(6):814-824. https://doi.org/10.1016/j.jelectrocard.2017.08.005 PMid:28912074 DOI: https://doi.org/10.1016/j.jelectrocard.2017.08.005
Zareba W, McNitt S, Polonsky S, Couderc JP. JT interval: What does this interval mean?J Electrocardiol. 2017; 50(6):748-751. https://doi.org/10.1016/j.jelectrocard.2017.07.019 PMid:28942950 DOI: https://doi.org/10.1016/j.jelectrocard.2017.07.019
Waaler BA, Eriksen M, Toska K.The effect of meal size on postprandial increase in cardiac output. Acta Physiol Scand. 1991; 142(1):33-39. https://doi.org/10.1111/j.1748-1716.1991.tb09125.x PMid:1877363 DOI: https://doi.org/10.1111/j.1748-1716.1991.tb09125.x
Taubel J, Lorch U, Ferber G, et al.Insulin at normal physiological levels does not prolong QT(c) interval in thorough QT studies performed in healthy volunteers. Br J Clin Pharmacol. 2013; 75(2):392-403. https://doi.org/10.1111/j.1365-2125.2012.04376.x PMid:22775199 PMCid:PMC3579254 DOI: https://doi.org/10.1111/j.1365-2125.2012.04376.x
Fridericia LS.The duration of systole in an electrocardiogram in normal humans and in patients with heart disease. 1920. Ann Noninvasive Electrocardiol. 2003; 8(4):343-351. https://doi.org/10.1046/j.1542-474X.2003.08413.x PMid:14516292 DOI: https://doi.org/10.1046/j.1542-474X.2003.08413.x
Goldenberg I, Moss AJ, Zareba W. QT interval: how to measure it and what is "normal". J Cardiovasc Electrophysiol. 2006; 17(3):333-336. https://doi.org/10.1111/j.1540-8167.2006.00408.x PMid:16643414 DOI: https://doi.org/10.1111/j.1540-8167.2006.00408.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Erdoğan Sökmen, Hacı Mehmet Çalışkan, Mustafa Çelik, Serkan Sivri, Yalçın Boduroğlu, Sinan Cemgil Özbek

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0