Allele Frequency of SLC22A1 Met420del Metformin Main Transporter Encoding Gene among Javanese-Indonesian Population

Authors

  • Vitarani DA Ningrum Laboratory of Pharmaceutical Research, Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia https://orcid.org/0000-0003-0423-5555
  • Rochmy Istikharah Laboratory of Biochemistry, Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
  • Rheza Firmansyah Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2019.087

Keywords:

SLC22A1, Met420del, Metformin, Javanese-Indonesian population, Yogyakarta Province

Abstract

BACKGROUND: Genetic variation in the genes that encode metformin transporters has been proven to cause pharmacokinetic variability and various glycemic response to metformin. Organic Cation Transporter (OCT) 1 protein encoded by the SLC22A1 gene is primarily responsible for the process of metformin influx to the hepatocytes as the target of antihyperglycemic action as well as metformin elimination through the renal. This study aimed to determine the allele frequency distribution of the SLC22A1 Met420del gene in OCT1 among the Javanese population, the largest ethnic group in Indonesia with T2DM.

METHODS: The research involved 100 adult patients from 9 healthcare facilities in Yogyakarta Province. The PCR-RFLP method was employed as a genotype analysis to detect polymorphism using 5'-AGGTTCACGGACTCTGTGCT-3' forward primer and 5'-AAGCTGGAGTGTGCGATCT-3' reverse primer.

RESULTS: No AA variant (wild type) type was found in the SLC22A1 Met420del gene, and only 4% of the subjects had Aa heterozygote type. The allele frequencies of A and a were 2.0% and 98.0% in all subjects, respectively.

CONCLUSION: The allele frequencies in the Javanese-Indonesian population were almost the same as those in the studies involving Japanese, Chinese-Han, and Asian-American populations. This study recommends further research on the correlation between the influence of methionine deletion at codon 420 on the variability of pharmacokinetic profiles and the glycemic response to metformin as well as the incidence of gastrointestinal intolerance due to metformin administration.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Ministry of Health of the Republic of Indonesia. Riset Kesehatan Dasar 2013, 2013.

International Diabetes Federation. Indonesia VS World Prevalence of Diabetes, 2015.

Indonesian Association of Endocrinologists (Perkeni). Consensus on Type-2 Diabetes Mellitus Control and Prevention, 2011.

Cook MN, Girman CJ, Stein PP, Alexander CM. Initial monotherapy with either metformin or sulphonylureas often fails to achieve or maintain current glycaemic goals in patients with Type 2 diabetes in UK primary care. Diabet Med J Br Diabet Assoc. 2007; 24:350–8. https://doi.org/10.1111/j.1464-5491.2007.02078.x PMid:17335466 DOI: https://doi.org/10.1111/j.1464-5491.2007.02078.x

Holstein A, Seeringer A, Kovacs P. Therapy with oral antidiabetic drugs: applied pharmacogenetics. Br J Diabetes Vasc Dis. 2011; 11:10–6. https://doi.org/10.1177/1474651410397583 DOI: https://doi.org/10.1177/1474651410397583

Ningrum VDA, Ikawati Z, Sadewa AH, Ikhsan MR. Patient-factors associated with metformin steady-state levels in type 2 diabetes mellitus with therapeutic dosage. J Clin Transl Endocrinol. 2018; 12:42–7. https://doi.org/10.1016/j.jcte.2018.05.001 DOI: https://doi.org/10.1016/j.jcte.2018.05.001

Leabman MK, Giacomini KM. Estimating the contribution of genes and environment to variation in renal drug clearance. Pharmacogenetics. 2003; 13:581–4. https://doi.org/10.1097/00008571-200309000-00007 DOI: https://doi.org/10.1097/00008571-200309000-00007

Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, et al. Clinical Pharmacokinetics of Metformin: Clin Pharmacokinet. 2011; 50:81–98. https://doi.org/10.2165/11534750-000000000-00000 PMid:21241070 DOI: https://doi.org/10.2165/11534750-000000000-00000

Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res. 2007; 24:1227–51. https://doi.org/10.1007/s11095-007-9254-z PMid:17473959

Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T, Sehrt D, et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther. 2009; 86:299–306. https://doi.org/10.1038/clpt.2009.92 PMid:19536068

Becker ML, Visser LE, van Schaik RHN, Hofman A, Uitterlinden AG, Stricker BHC. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J. 2009; 9:242–7. https://doi.org/10.1038/tpj.2009.15 PMid:19381165 DOI: https://doi.org/10.1038/tpj.2009.15

Christensen MMH, Brasch-Andersen C, Green H, Nielsen F, Damkier P, Beck-Nielsen H, et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics. 2011; 21:837–50. https://doi.org/10.1097/FPC.0b013e32834c0010 PMid:21989078 DOI: https://doi.org/10.1097/FPC.0b013e32834c0010

Mahrooz A, Parsanasab H, Hashemi-Soteh MB, Kashi Z, Bahar A, Alizadeh A, et al. The role of clinical response to metformin in patients newly diagnosed with type 2 diabetes: a monotherapy study. Clin Exp Med. 2015; 15:159–65. https://doi.org/10.1007/s10238-014-0283-8 PMid:24740684

Umamaheswaran G, Praveen RG, Damodaran SE, Das AK, Adithan C. Influence of SLC22A1 rs622342 genetic polymorphism on metformin response in South Indian type 2 diabetes mellitus patients. Clin Exp Med. 2015; 15:511–7. https://doi.org/10.1007/s10238-014-0322-5 PMid:25492374 DOI: https://doi.org/10.1007/s10238-014-0322-5

McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia. 2016; 59:426–35. https://doi.org/10.1007/s00125-015-3844-9 PMid:26780750 PMCid:PMC4742508 DOI: https://doi.org/10.1007/s00125-015-3844-9

Tarasova L, Kalnina I, Geldnere K, Bumbure A, Ritenberga R, Nikitina-Zake L, et al. Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet Genomics. 2012; 22:659–66. https://doi.org/10.1097/FPC.0b013e3283561666 PMid:22735389

Itoda M, Saito Y, Maekawa K, Hichiya H, Komamura K, Kamakura S, et al. Seven Novel Single Nucleotide Polymorphisms in the Human SLC22A1 Gene Encoding Organic Cation Transporter 1 (OCT1). Drug Metab Pharmacokinet. 2004; 19:308–12. https://doi.org/10.2133/dmpk.19.308 PMid:15499200 DOI: https://doi.org/10.2133/dmpk.19.308

Zhou Y, Ye W, Wang Y, Jiang Z, Meng X, Xiao Q, et al. Genetic variants of OCT1 influence glycemic response to metformin in Han Chinese patients with type-2 diabetes mellitus in Shanghai. Int J Clin Exp Pathol. 2015; 8:9533–42. PMid:26464716 PMCid:PMC4583948

Shu Y, Leabman MK, Feng B, Mangravite LM, Huang CC, Stryke D, et al. Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc Natl Acad Sci U S A. 2003; 100:5902–7. https://doi.org/10.1073/pnas.0730858100 PMid:12719534 PMCid:PMC156299 DOI: https://doi.org/10.1073/pnas.0730858100

Mahrooz A, Parsanasab H, Hashemi-Soteh MB, Kashi Z, Bahar A, Alizadeh A, et al. The role of clinical response to metformin in patients newly diagnosed with type 2 diabetes: a monotherapy study. Clin Exp Med. 2015; 15:159–65. https://doi.org/10.1007/s10238-014-0283-8 PMid:24740684

Kerb R, Brinkmann U, Chatskaia N, Gorbunov D, Gorboulev V, Mornhinweg E, et al. Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenetics. 2002; 12:591–5. https://doi.org/10.1097/00008571-200211000-00002 PMid:12439218

Tarasova L, Kalnina I, Geldnere K, Bumbure A, Ritenberga R, Nikitina-Zake L, et al. Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet Genomics. 2012; 22:659–66. https://doi.org/10.1097/FPC.0b013e3283561666 PMid:22735389 DOI: https://doi.org/10.1097/FPC.0b013e3283561666

Yuliwulandari R, Kashiwase K, Nakajima H, Uddin J, Susmiarsih TP, Sofro ASM, et al. Polymorphisms of HLA genes in Western Javanese (Indonesia): close affinities to Southeast Asian populations. Tissue Antigens. 2009; 73:46–53. https://doi.org/10.1111/j.1399-0039.2008.01178.x PMid:19140832 DOI: https://doi.org/10.1111/j.1399-0039.2008.01178.x

Ningrum VD, Ikawati Z, Sadewa AH, Ikhsan MR. Allele Frequencies of Two Main Metformin Transporter Genes: SLC22A1 rs628031 A> G and SLC47A1 rs2289669 G> A among the Javanese Population in Indonesia. Current Pharmacogenomics and Personalized Medicine (Formerly Current Pharmacogenomics). 2017; 15(2):121-8. https://doi.org/10.2174/1875692115666170706113120 DOI: https://doi.org/10.2174/1875692115666170706113120

Schlatter E, Klassen P, Massmann V, Holle SK, Guckel D, Edemir B, et al. Mouse organic cation transporter 1 determines properties and regulation of basolateral organic cation transport in renal proximal tubules. Pflüg Arch - Eur J Physiol. 2014; 466:1581–9. https://doi.org/10.1007/s00424-013-1395-9 PMid:24233562 DOI: https://doi.org/10.1007/s00424-013-1395-9

Urakami Y, Okuda M, Saito H, Inui K. Hormonal regulation of organic cation transporter OCT2 expression in rat kidney. FEBS Lett. 2000; 473:173–6. https://doi.org/10.1016/S0014-5793(00)01525-8 DOI: https://doi.org/10.1016/S0014-5793(00)01525-8

Nies AT, Koepsell H, Winter S, Burk O, Klein K, Kerb R, et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology. 2009; 50:1227–40. https://doi.org/10.1002/hep.23103 PMid:19591196

Koepsell H, Lips K, Volk C. Polyspecific Organic Cation Transporters: Structure, Function, Physiological Roles, and Biopharmaceutical Implications. Pharm Res. 2007; 24:1227–51. https://doi.org/10.1007/s11095-007-9254-z PMid:17473959 DOI: https://doi.org/10.1007/s11095-007-9254-z

Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012; 165:1260–87. https://doi.org/10.1111/j.1476-5381.2011.01724.x PMid:22013971 PMCid:PMC3372714 DOI: https://doi.org/10.1111/j.1476-5381.2011.01724.x

Müller J, Lips KS, Metzner L, Neubert RHH, Koepsell H, Brandsch M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol. 2005; 70:1851–60. https://doi.org/10.1016/j.bcp.2005.09.011 PMid:16263091 DOI: https://doi.org/10.1016/j.bcp.2005.09.011

Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2012; 22:820–7. https://doi.org/10.1097/FPC.0b013e3283559b22 PMid:22722338 PMCid:PMC3651676 DOI: https://doi.org/10.1097/FPC.0b013e3283559b22

Han T (Kevin), Everett RS, Proctor WR, Ng CM, Costales CL, Brouwer KLR, et al. Organic Cation Transporter 1 (OCT1/mOct1) Is Localized in the Apical Membrane of Caco-2 Cell Monolayers and Enterocytes. Mol Pharmacol. 2013; 84:182–9. https://doi.org/10.1124/mol.112.084517 PMid:23680637 PMCid:PMC3716317 DOI: https://doi.org/10.1124/mol.112.084517

Han T (Kevin), Proctor WR, Costales CL, Cai H, Everett RS, Thakker DR. Four Cation-Selective Transporters Contribute to Apical Uptake and Accumulation of Metformin in Caco-2 Cell Monolayers. J Pharmacol Exp Ther. 2015; 352:519–28. https://doi.org/10.1124/jpet.114.220350 PMid:25563903 PMCid:PMC4352590 DOI: https://doi.org/10.1124/jpet.114.220350

Kerb R, Brinkmann U, Chatskaia N, Gorbunov D, Gorboulev V, Mornhinweg E, et al. Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenet Genomics. 2002; 12:591–595. https://doi.org/10.1097/00008571-200211000-00002 DOI: https://doi.org/10.1097/00008571-200211000-00002

Nies AT, Koepsell H, Winter S, Burk O, Klein K, Kerb R, et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology. 2009; 50:1227–40. https://doi.org/10.1002/hep.23103 PMid:19591196 DOI: https://doi.org/10.1002/hep.23103

Stamer UM, Musshoff F, Stüber F, Brockmöller J, Steffens M, Tzvetkov MV. Loss-of-function polymorphisms in the organic cation transporter OCT1 are associated with reduced postoperative tramadol consumption. PAIN. 2016; 157:2467–75. https://doi.org/10.1097/j.pain.0000000000000662 PMid:27541716 DOI: https://doi.org/10.1097/j.pain.0000000000000662

Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T, Sehrt D, et al. The Effects of Genetic Polymorphisms in the Organic Cation Transporters OCT1, OCT2, and OCT3 on the Renal Clearance of Metformin. Clin Pharmacol Ther. 2009; 86:299–306. https://doi.org/10.1038/clpt.2009.92 PMid:19536068 DOI: https://doi.org/10.1038/clpt.2009.92

Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest. 2007; 117:1422–31. https://doi.org/10.1172/JCI30558 PMid:17476361 PMCid:PMC1857259 DOI: https://doi.org/10.1172/JCI30558

Shu Y, Brown C, Castro RA, Shi RJ, Lin ET, Owen RP, et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther. 2008; 83:273–80. https://doi.org/10.1038/sj.clpt.6100275 PMid:17609683 PMCid:PMC2976713 DOI: https://doi.org/10.1038/sj.clpt.6100275

Mahrooz A, Parsanasab H, Hashemi-Soteh MB, Kashi Z, Bahar A, Alizadeh A, et al. The role of clinical response to metformin in patients newly diagnosed with type 2 diabetes: a monotherapy study. Clin Exp Med. 2015; 15:159–165. https://doi.org/10.1007/s10238-014-0283-8 PMid:24740684 DOI: https://doi.org/10.1007/s10238-014-0283-8

Zhou K, Donnelly LA, Kimber CH, Donnan PT, Doney ASF, Leese G, et al. Reduced-Function SLC22A1 Polymorphisms Encoding Organic Cation Transporter 1 and Glycemic Response to Metformin: A GoDARTS Study. Diabetes. 2009; 58:1434–9. https://doi.org/10.2337/db08-0896 PMid:19336679 PMCid:PMC2682689 DOI: https://doi.org/10.2337/db08-0896

Ningrum VD. Association of Genetic Variants in Organic Cation Transporter 1 (OCT1) and Multidrug and Toxin Extrusion 1 (MATE1) with the Steady-State Pharmacokinetics and Pharmacodynamics of Metformin. Dissertation. Universitas Gadjah Mada, 2017.

Dujic T, Causevic A, Bego T, Malenica M, Velijaâ€Asimi Z, Pearson ER, et al. Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with Type 2 diabetes. Diabet Med. 2016; 33:511–4. https://doi.org/10.1111/dme.13040 PMid:26605869 PMCid:PMC5064645 DOI: https://doi.org/10.1111/dme.13040

Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CNA, Pearson ER. Association of Organic Cation Transporter 1 with Intolerance to Metformin in Type 2 Diabetes: A GoDARTS Study. Diabetes. 2015; 64:1786–93. https://doi.org/10.2337/db14-1388 PMid:25510240 PMCid:PMC4452716 DOI: https://doi.org/10.2337/db14-1388

Grimm D, Lieb J, Weyer V, Vollmar J, Darstein F, Lautem A, et al. Organic Cation Transporter 1 (OCT1) mRNA expression in hepatocellular carcinoma as a biomarker for sorafenib treatment. BMC Cancer. 2016; 16:94. https://doi.org/10.1186/s12885-016-2150-3 PMid:26872727 PMCid:PMC4751638 DOI: https://doi.org/10.1186/s12885-016-2150-3

Published

2019-02-14

How to Cite

1.
Ningrum VD, Istikharah R, Firmansyah R. Allele Frequency of SLC22A1 Met420del Metformin Main Transporter Encoding Gene among Javanese-Indonesian Population. Open Access Maced J Med Sci [Internet]. 2019 Feb. 14 [cited 2024 Apr. 24];7(3):378-83. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2019.087

Issue

Section

B - Clinical Sciences