Association between Glycated Hemoglobin with the Levels of Serum Proinflammatory Cytokines and Antioxidants in Patients with Type 2 Diabetes Mellitus in Universitas Sumatera Utara Hospital

Authors

  • Mutiara Indah Sari Departement of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Jl. Dr Mansur No.5 Medan, Indonesia
  • Zaimah Z. Tala Departement of Clinical Nutrition, Faculty of Medicine, Universitas Sumatera Utara, Jl. Dr Mansur No.5 Medan, Indonesia
  • Dian Dwi Wahyuni Departement of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Jl. Dr Mansur No.5 Medan, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2019.168

Keywords:

Glycated Hemoglobin, Interleukin-6, Glutathione peroxidase, Glutathione, T2DM

Abstract

BACKGROUND: Hyperglycemia condition in diabetes mellitus (DM) influences proinflammatory cytokine levels and disrupts antioxidant balances. Glycated Hemoglobin is used as a biomarker of glycemic control in DM.

AIM: This study aimed to analyse the association between glycated Hemoglobin with the levels of serum proinflammatory cytokines (interleukin (IL)-6) and antioxidants (glutathione peroxidase (GPx) and glutathione (GSH)) in type 2 diabetes mellitus (T2DM) patients in Universitas Sumatera Utara (USU) Hospital.

METHODS: A total of eighty-nine T2DM patients were recruited at USU Hospital. Glycated Hemoglobin levels were measured using routine laboratory tests at USU Hospital. The IL-6, GPx, and GSH levels were measured using enzyme-linked immunosorbent (ELISA) method. The statistical significance was determined using the Kruskal Wallis test, followed by Mann-Whitney test (p < 0.05).

RESULTS: The mean of glycated hemoglobin (%), IL-6 (pg/ml), GPx (ng/ml), and GSH (ng/ml) levels in T2DM patients were 8.96 ± 2.28, 59.27 ± 16.04, 32.13 ± 12.10, and 7.42 ± 3.50, respectively. Regarding the glycated Hemoglobin levels, 28.09% of patients had controlled diabetes, 24.72% of patients had poorly controlled diabetes, and 47.19% of patients had uncontrolled diabetes. The IL-6 levels of the three study groups based on glycated Hemoglobin levels were related significantly (p < 0.05), but there was no statistically significant difference observed between the GPx and GSH levels (p > 0.05).

CONCLUSION: The present study suggests that the glycated Hemoglobin was associated with the levels of serum IL-6 levels but not GPx and GSH levels in T2DM patients in USU Hospital.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

American Diabetes Association/ ADA. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014; 37(SUPPL.1):81-90. https://doi.org/10.2337/dc14-S081

World Health Organization. Global Report on Diabetes, Geneva. 2016; 978:1-88.

International Diabetic Federation. IDF Diabetic Atlas. Chapter 3, Eighth edition. 2017; (19): 43-46.

Badan Penelitian dan Pengembangan Kesehatan Kementrian Kesehatan Republik Indonesia 2013. RISET KESEHATAN DASAR Jakarta, 2013: 87.

Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. Athe Role of Oxidative Stress and Antioxidants in Diabetic Complications. SQU Med J. 2012; 12(February):5–18.

Tiwari BK, Pandey KB, Abidi AB, Rizvi SI. Markers of oxidative stress during diabetes mellitus. Journal of biomarkers. 2013; 2013.

Wang X, Bao W, Liu J, OuYang Y-Y, Wang D, Rong S, Xiao X, Shan Z-L, Zhang Y, Yao P, and Liu L-G. Inflammatory Markers and Risk of Type 2 Diabetes: A systematic review and meta-analysis. Diabetes Care. 2013; 36(1):166–75. https://doi.org/10.2337/dc12-0702 PMid:23264288 PMCid:PMC3526249

Al-Shukaili A, Al-Ghafri S, Al-Marhoobi S, Al-Abri S, Al-Lawati J, Al-Maskari M. Analysis of inflammatory mediators in type 2 diabetes patients. Int J Endocrinol. 2013; 8–10. https://doi.org/10.1155/2013/976810

Jelinek HF, Stranieri A, Yatsko A, Venkatraman S. Data analytics identify glycated Hemoglobin co-markers for type 2 diabetes mellitus diagnosis. Comput Biol Med. 2016; 75:90–7. https://doi.org/10.1016/j.compbiomed.2016.05.005 PMid:27268735

Flier JS and Maratos-Flier E. 'Biology of Obesity' at Harrison's Principle of Internal Medicine, ed. Kasper DL, Fauci AS, Hauser SL, Longo DL, Jameson JL, Loscalzo J. 18th edn, McGraw-Hill Education, 2010:622-629.

Kharroubi AT, Darwish HM, Akkawi MA, Ashareef AA, Almasri ZA, Bader KA, Khammash UM. Total Antioxidant Status in Type 2 Diabetic Patients in Palestine. J Diabetes Res. 2015; 2015:461271. https://doi.org/10.1155/2015/461271 PMid:26090472 PMCid:PMC4458273

Aouacheri O, Saka S, Krim M, Messaadia A, Maidi I. The Investigation of the Oxidative Stress-Related Parameters in Type2 Diabetes Mellitus. Can J Diabetes. 2015; 39(1):44–9. https://doi.org/10.1016/j.jcjd.2014.03.002 PMid:25065473

Gawlik K, Naskalski JW, Fedak D, Pawlica-Gosiewska D, Grudzień U, Dumnicka P, Małecki MT, Solnica B. Markers of Antioxidant Defense in Patients with Type 2 Diabetes. Oxid Med Cell Longev. 2016; 2016:2352361. https://doi.org/10.1155/2016/2352361 PMid:26640613 PMCid:PMC4657103

Lubos E, Loscalzo J, Handy DE. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid Redox Signal. 2011;15(7):1957–97. https://doi.org/10.1089/ars.2010.3586 PMid:21087145 PMCid:PMC3159114

Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta. 2013; 1830(5):3217-66. https://doi.org/10.1016/j.bbagen.2012.09.018 PMid:23036594

Perkeni PB. Konsensus pengelolaan dan pencegahan diabetes melitus tipe 2 di Indonesia. Jakarta: PB Perkeni, 2015:78.

Aldasouqi SA, Gossain VV. Hemoglobin A1c: past, present and future. Annals of Saudi medicine. 2008; 28(6):411-9. https://doi.org/10.4103/0256-4947.51670

Qiao YC, Shen J, He L, Hong XZ, Tian F, Pan YH, Liang L, Zhang XX, Zhao HL. Changes of Regulatory T Cells and of Proinflammatory and Immunosuppressive Cytokines in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J Diabetes Res. 2016; 2016:3694957. https://doi.org/10.1155/2016/3694957 PMid:27777959 PMCid:PMC5061980

Ankush RD, Kulkarni DG. Erythrocyte reduced glutathione level in type -2 diabetic patients with and without nephropathy. 2017; 13(3):253–60.

Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights. 2016; 11:95–104. https://doi.org/10.4137/BMI.S38440 PMid:27398023 PMCid:PMC4933534

Cavero-Redondo I, Peleteiro B, Ãlvarez-Bueno C, Rodriguez-Artalejo F, Martínez-Vizcaíno V. Glycated Hemoglobin A1c as a risk factor of cardiovascular outcomes and all-cause mortality in diabetic and non-diabetic populations: A systematic review and meta-analysis. BMJ Open. 2017; 7(7):1–12. https://doi.org/10.1136/bmjopen-2017-015949

Khatab M, Khader YS, Al-Khawaldeh A, Ajlouni K. Factors associated with poor glycemic control among patients with Type 2 diabetes. Journal of Diabetes and its Complications. 2010; 24(2). https://doi.org/10.1016/j.jdiacomp.2008.12.008

Almalki NR, Almalki TM, Alswat K. Diabetics retinopathy knowledge and awareness assessment among the type 2 diabetics. Open access Macedonian journal of medical sciences. 2018; 6(3):574-7. https://doi.org/10.3889/oamjms.2018.121 PMid:29610623 PMCid:PMC5874388

Haghighatpanah M, Nejad ASM, Haghighatpanah M, Thunga G, Mallayasamy S. Factors that Correlate with Poor Glycemic Control in Type 2 Diabetes Mellitus Patients with Complications. Osong Public Heal Res Perspect. 2018; 9(4):167–74. https://doi.org/10.24171/j.phrp.2018.9.4.05 PMid:30159222 PMCid:PMC6110332

Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm J. 2016; 24(5):547–53. https://doi.org/10.1016/j.jsps.2015.03.013 PMid:27752226 PMCid:PMC5059829

Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications review-Article. Cell Death Dis. 2018; 9(2). https://doi.org/10.1038/s41419-017-0135-z PMid:29371661 PMCid:PMC5833737

Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012; 5(1):9–19. https://doi.org/10.1097/WOX.0b013e3182439613 PMid:23268465 PMCid:PMC3488923

Sari MI, Ilyas S, Widyawati T, Antika MA. Effect of lawsonia innermis (linn) leaves ethanolic extract on blood glucose and malondialdehyde level in alloxan-induced diabetic rats. IOP Conf Ser Earth Environ Sci. 2018; 130(1). https://doi.org/10.1088/1755-1315/130/1/012034

Sharma M, Arora M, Mustafa I, Kumar S, Mittal A, Soam SS, Shukla C. Correlation of Glycated Hemoglobin with Oxidative Stress and Erythrocyte Fragility in Type-2 Diabetes Mellitus. Journal of Contemporary Medical Research. 2017; 4(9):1909-11.

Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harbor perspectives in biology. 2014; 6(10):a016295. https://doi.org/10.1101/cshperspect.a016295 PMid:25190079 PMCid:PMC4176007

Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta - Mol Cell Res. 2011; 1813(5):878–88. https://doi.org/10.1016/j.bbamcr.2011.01.034 PMid:21296109

Ates I. Type 2 diabetes mechanisms, role of cytokines and their variations in disease development. Fabad J Pharm Sci. 2018; 43(1):31–40.

Barakat L, Shora H, El-Deen I, El-Sayed E-S. Inflammatory Biomarkers of Cardiometabolic Risk in Obese Egyptian Type 2 Diabetics. Med Sci. 2017; 5(4):25. https://doi.org/10.3390/medsci5040025

Hisalkar P, Patne A, Fawade M, Karnik A. Evaluation of plasma superoxide dismutase and glutathione peroxidase in type 2 diabetic patients Biology and Medicine. Biol Med. 2012; 4(2):65–72

Lutchmansingh FK, Hsu JW, Bennett FI, Badaloo A V., Norma MA, Georgiana MGS, et al. Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia. PLoS One. 2018; 13(6):1–12. https://doi.org/10.1371/journal.pone.0198626 PMid:29879181 PMCid:PMC5991679

Wong FN, Chua KH, Tan JAMA, Wong CM, Kuppusamy UR. Glycaemic control in type 2 diabetic patients with chronic kidney disease: the impacts on enzymatic antioxidants and soluble RAGE. PeerJ. 2018; 6:e4421. https://doi.org/10.7717/peerj.4421 PMid:29610703 PMCid:PMC5880175

Pieme CA, Tatangmo JA, Simo G, Biapa Nya PC, Ama Moor VJ, Moukette Moukette B, et al. Relationship between hyperglycemia, antioxidant capacity and some enzymatic and non-enzymatic antioxidants in African patients with type 2 diabetes. BMC Res Notes. 2017; 10(1):1–7. https://doi.org/10.1186/s13104-017-2463-6 PMid:28356165 PMCid:PMC5372257

Kalkan IH, Suher M. The relationship between the level of glutathione, impairment of glucose metabolism and complications of diabetes mellitus. Pakistan J Med Sci. 2013; 29(4):938–42. https://doi.org/10.12669/pjms.294.2859

Salmon AB. Oxidative stress in the etiology of age-associated decline in glucose metabolism. Longev Heal. 2012; 1(1):7. https://doi.org/10.1186/2046-2395-1-7 PMid:24764512 PMCid:PMC3922939

Published

2019-03-10

How to Cite

1.
Sari MI, Tala ZZ, Wahyuni DD. Association between Glycated Hemoglobin with the Levels of Serum Proinflammatory Cytokines and Antioxidants in Patients with Type 2 Diabetes Mellitus in Universitas Sumatera Utara Hospital. Open Access Maced J Med Sci [Internet]. 2019 Mar. 10 [cited 2024 Sep. 11];7(5):715-20. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2019.168

Issue

Section

A - Basic Science