Application of Imaging Technologies in Breast Cancer Detection: A Review Article

Authors

  • Zeinab Safarpour Lima Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
  • Mohammad Reza Ebadi Shohadaye Haft-e-tir Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
  • Ghazaleh Amjad Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
  • Ladan Younesi Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran

DOI:

https://doi.org/10.3889/oamjms.2019.171

Keywords:

Breast Imaging, Cancer detection, Mammography, Ultrasonography MRI, Breast Scintimammography

Abstract

One of the techniques utilised in the management of cancer in all stages is multiple biomedical imaging. Imaging as an important part of cancer clinical protocols can provide a variety of information about morphology, structure, metabolism and functions. Application of imaging technics together with other investigative apparatus including in fluids analysis and vitro tissue would help clinical decision-making. Mixed imaging techniques can provide supplementary information used to improve staging and therapy planning. Imaging aimed to find minimally invasive therapy to make better results and reduce side effects. Probably, the most important factor in reducing mortality of certain cancers is an early diagnosis of cancer via screening based on imaging. The most common cancer in women is breast cancer. It is considered as the second major cause of cancer deaths in females, and therefore it remained as an important medical and socio-economic issue. Medical imaging has always formed part of breast cancer care and has used in all phases of cancer management from detection and staging to therapy monitoring and post-therapeutic follow-up. An essential action to be performed in the preoperative staging of breast cancer based on breast imaging. The general term of breast imaging refers to breast sonography, mammography, and magnetic resonance tomography (MRT) of the breast (magnetic resonance mammography, MRM).

Further development in technology will lead to increase imaging speed to meet physiological processes requirements. One of the issues in the diagnosis of breast cancer is sensitivity limitation. To overcome this limitation, complementary imaging examinations are utilised that traditionally includes screening ultrasound, and combined mammography and ultrasound. Development in targeted imaging and therapeutic agents calls for close cooperation among academic environment and industries such as biotechnological, IT and pharmaceutical industries.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin. 2014; 64:9e29.

DeSantis CE, Lin CC, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014; 64:252e71.

Forootan M, Tabatabaeefar M, Mosaffa N, Rahimzadeh Ashkalak H, Darvishi M. Investigating Esophageal Stent-Placement Outcomes in Patients with Inoperable Non-Cervical Esophageal Cancer. J Cancer. 2018; 9(1):213-218. https://doi.org/10.7150/jca.21854 PMid:29290788 PMCid:PMC5743730

Fass L. Imaging and cancer: a review. Molecular oncology. 2008; 2(2):115-52. https://doi.org/10.1016/j.molonc.2008.04.001 PMid:19383333 PMCid:PMC5527766

Ehman RL, Hendee WR, Welch MJ, Dunnick NR, Bresolin LB, Arenson RL, Baum S, Hricak H, Thrall JH. Blueprint for imaging in biomedical research. Radiology. 2007; 244(1):12-27. https://doi.org/10.1148/radiol.2441070058 PMid:17507725

Mohammadifard M, Saburi A. The role of other imaging modalities in evaluating the tubal patency. J Hum Reprod Sci. 2014; 7(2):154-155. https://doi.org/10.4103/0974-1208.138877 PMid:25191032 PMCid:PMC4150145

Javedani Masrour M, Shafaie A, Yoonesi L, Aerabsheibani H, Javedani Masrour S. Evaluating Endometrial Thickness and Vascular Ultrasound Pattern and Pregnancy Outcomes in Intrauterine Insemination Cycle. Asian Journal of Pharmaceutical Research and Health Care. 2016; 8(S1):24-29. https://doi.org/10.18311/ajprhc/2016/7718

Younesi L, Shahnazari R. Chorionic Bump in First-trimester Sonography. J Med Ultrasound. 2017; 25(4):221-226. https://doi.org/10.1016/j.jmu.2017.04.004 PMid:30065496 PMCid:PMC6029338

Brindle K. New approaches for imaging tumour responses to treatment. Nature Reviews Cancer. 2008; 8(2):94-107. https://doi.org/10.1038/nrc2289 PMid:18202697

Heryanto YD, Achmad A, Taketomi-Takahashi A, et al. 2015. In vivo molecular imaging of cancer stem cells. Am J Nucl Med Mol Imaging. 2014; 5:14e26.

Desar IM, Van Herpen CM, Van Laarhoven HW, Barentsz JO, Oyen WJ, Van Der Graaf WT. Beyond RECIST: molecular and functional imaging techniques for evaluation of response to targeted therapy. Cancer treatment reviews. 2009; 35(4):309-21. https://doi.org/10.1016/j.ctrv.2008.12.001 PMid:19136215

Yang DJ, Pham L, Liao MH, et al. 2014. Advances in molecular pathway-directed cancer systems imaging and therapy. Biomed Res Int. 2014; 2014:639475. https://doi.org/10.1155/2014/639475 PMid:25587538 PMCid:PMC4283426

Smith JJ, Sorensen AG, Thrall JH. Biomarkers in imaging: realising radiology’s future. Radiology. 2003; 227(3):633-8. https://doi.org/10.1148/radiol.2273020518 PMid:12663828

Hehenberger M, Chatterjee A, Reddy U, Hernandez J, Sprengel J. IT solutions for imaging biomarkers in biopharmaceutical research and development. IBM systems journal. 2007; 46(1):183-98. https://doi.org/10.1147/sj.461.0183

O’Connor M, Rhodes D, Hruska C. Molecular breast imaging. Expert Rev Anticancer Ther. 2009; 9:1073-1080. https://doi.org/10.1586/era.09.75 PMid:19671027 PMCid:PMC2748346

Mankoff DA. A defi nition of molecular imaging. J Nucl Med. 2007; 48:18N, 21N.

Zhi H, Ou B, Luo BM, Feng X, Wen YL, Yang HY. Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. Journal of ultrasound in medicine. 2007; 26(6):807-15. https://doi.org/10.7863/jum.2007.26.6.807 PMid:17526612

Tsutsumi M, Miyagawa T, Matsumura T, Kawazoe N, Ishikawa S, Shimokama T, Shiina T, Miyanaga N, Akaza H. The impact of real-time tissue elasticity imaging (elastography) on the detection of prostate cancer: clinicopathological analysis. International journal of clinical oncology. 2007; 12(4):250-5. https://doi.org/10.1007/s10147-007-0669-7 PMid:17701002

Pallwein L, Mitterberger M, Struve P, Pinggera G, Horninger W, Bartsch G, Aigner F, Lorenz A, Pedross F, Frauscher F. Real?time elastography for detecting prostate cancer: preliminary experience. BJU international. 2007; 100(1):42-6. https://doi.org/10.1111/j.1464-410X.2007.06851.x PMid:17552952

Saftoiu A, Vilman P. Endoscopic ultrasound elastography-a new imaging technique for the visualization of tissue elasticity distribution. Journal of Gastrointestinal and Liver Diseases. 2006; 15(2):161-165. PMid:16802011

Poplack SP, Paulsen KD, Hartov A, Meaney PM, Pogue BW, Tosteson TD, Grove MR, Soho SK, Wells WA. Electromagnetic breast imaging: average tissue property values in women with negative clinical findings. Radiology. 2004; 231(2):571-80. https://doi.org/10.1148/radiol.2312030606 PMid:15128998

Poplack SP, Tosteson TD, Wells WA, Pogue BW, Meaney PM, Hartov A, Kogel CA, Soho SK, Gibson JJ, Paulsen KD. Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms. Radiology. 2007; 243(2):350-9. https://doi.org/10.1148/radiol.2432060286 PMid:17400760

He W, Wang H, Hartmann LC, Cheng JX, Low PS. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proceedings of the National Academy of Sciences. 2007; 104(28):11760-5. https://doi.org/10.1073/pnas.0703875104 PMid:17601776 PMCid:PMC1913863

Beyer T, Townsend DW, Blodgett TM. Dual-modality PET/CT tomography for clinical oncology. The Quarterly Journal of Nuclear Medicine and Molecular Imaging. 2002; 46(1):24-34.

D’Hallewin MA, El Khatib S, Leroux A, Bezdetnaya L, Guillemin F. Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder. The Journal of urology. 2005; 174(2):736-40. https://doi.org/10.1097/01.ju.0000164729.36663.8d PMid:16006967

Pisano ED. Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med. 2005; 353:1773-83. https://doi.org/10.1056/NEJMoa052911 PMid:16169887

Bohndiek SE, Cook EJ, Arvanitis CD, Olivo A, Royle GJ, Clark AT, Prydderch ML, Turchetta R, Speller RD. A CMOS active pixel sensor system for laboratory-based x-ray diffraction studies of biological tissue. Physics in Medicine & Biology. 2008; 53(3):655-672. https://doi.org/10.1088/0031-9155/53/3/010 PMid:18199908

Getty D, D’Orsi CJ, Pickett R, Newell M, Gundry K, Roberson S. Improved accuracy of lesion detection in breast cancer screening with stereoscopic digital mammography. InRSNA Meeting 2007 (abstract SSG01-04) 2007.

Jong RA, Yaffe MJ, Skarpathiotakis M, Shumak RS, Danjoux NM, Gunesekara A, Plewes DB. Contrast-enhanced digital mammography: initial clinical experience. Radiology. 2003; 228(3):842-50. https://doi.org/10.1148/radiol.2283020961 PMid:12881585

Diekmann F, Bick U. Tomosynthesis and contrast-enhanced digital mammography: recent advances in digital mammography. European radiology. 2007; 17(12):3086-92. https://doi.org/10.1007/s00330-007-0715-x PMid:17661053

Lewin JM, Isaacs PK, Vance V, Larke FJ. Dual-energy contrast-enhanced digital subtraction mammography: feasibility. Radiology. 2003; 229(1):261. https://doi.org/10.1148/radiol.2291021276 PMid:12888621

Kwan ALC, et al. In: Flynn, M.J. (Ed.), Medical Imaging 2005: Physics of Medical Imaging. Proceedings of the SPIE. 2005; 5745:1317-1321. https://doi.org/10.1117/12.595887

Campadelli P, Casiraghi E, Artioli D. A fully automated method for lung nodule detection from postero-anterior chest radiographs. IEEE transactions on medical imaging. 2006; 25(12):1588-603. https://doi.org/10.1109/TMI.2006.884198 PMid:17167994

Kim SJ, Moon WK, Cho N, Cha JH, Kim SM, Im JG. Computer-aided detection in full-field digital mammography: sensitivity and reproducibility in serial examinations. Radiology. 2008; 246(1):71-80. https://doi.org/10.1148/radiol.2461062072 PMid:18096530

Gromet M. Comparison of computer-aided detection to double reading of screening mammograms: review of 231,221 mammograms. American Journal of Roentgenology. 2008; 190(4):854-9. https://doi.org/10.2214/AJR.07.2812 PMid:18356428

Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002; 225(1):165-75. https://doi.org/10.1148/radiol.2251011667 PMid:12355001

Mardor, Y., 2003. Proceedings of the American Association for Cancer Research 41 (abstract 2547). PMid:12637476

Artemov D, Mori N, Okollie B, Bhujwalla ZM. MR molecular imaging of the Her?2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine. 2003; 49(3):403-8. https://doi.org/10.1002/mrm.10406 PMid:12594741

Day SE, Kettunen MI, Gallagher FA, Hu DE, Lerche M, Wolber J, Golman K, Ardenkjaer-Larsen JH, Brindle KM. Detecting tumor response to treatment using hyperpolarized 13 C magnetic resonance imaging and spectroscopy. Nature medicine. 2007; 13(11):1382-1387. https://doi.org/10.1038/nm1650 PMid:17965722

Ross RJ, Thompson JS, Kim K, Bailey RA. Nuclear magnetic resonance imaging and evaluation of human breast tissue: preliminary clinical trials. Radiology. 1982; 143(1):195-205. https://doi.org/10.1148/radiology.143.1.7063727 PMid:7063727

Brindle KM. Molecular imaging using magnetic resonance: new tools for the development of tumour therapy. The British journal of radiology. 2003; 76(suppl_2):S111-7.

Bhattacharyya M, Ryan D, Carpenter R, Vinnicombe S, Gallagher CJ. Using MRI to plan breast-conserving surgery following neoadjuvant chemotherapy for early breast cancer. British journal of cancer. 2008; 98(2):289-293. https://doi.org/10.1038/sj.bjc.6604171 PMid:18219287 PMCid:PMC2361466

Uematsu T, Yuen S, Kasami M, Uchida Y. Dynamic contrast-enhanced MR imaging in screening detected microcalcification lesions of the breast: is there any value? Breast cancer research and treatment. 2007; 103(3):269-81. https://doi.org/10.1007/s10549-006-9373-y PMid:17063274

Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vascular health and risk management. 2006; 2(3):213-219. https://doi.org/10.2147/vhrm.2006.2.3.213 PMid:17326328 PMCid:PMC1993983

Leach MO. Application of magnetic resonance imaging to angiogenesis in breast cancer. Breast Cancer Research. 2001; 3:22-27. https://doi.org/10.1186/bcr266 PMid:11300102 PMCid:PMC138673

Padhani AR, O’Donell A, Hayes C, Judson I, Workman P, Hannah A, Leach MO, Husband JE. Changes in tumour vascular permeability with antiangiogenesis therapy: observations on histogram analysis. Proceedings of the Eighth International Society of Magnetic Resonance in Medicine, 2000:108.

Padhani AR, Hayes C, Assersohn L, Powles T, Leach MO, Husband JE. Response of breast carcinoma to chemotherapy: MR permeability changes using histogram analysis. Proceedings of the 8th International Society for Magnetic Resonance in Medicine. Denver, 2000:2160.

El Khouli RH, Macura KJ, Jacobs MA, Khalil TH, Kamel IR, Dwyer A, Bluemke DA. Dynamic contrast-enhanced MRI of the breast: quantitative method for kinetic curve type assessment. American Journal of Roentgenology. 2009; 193(4):W295-300. https://doi.org/10.2214/AJR.09.2483 PMid:19770298 PMCid:PMC3034220

Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-oncology. 2005; 7(4):452-64. https://doi.org/10.1215/S1152851705000232 PMid:16212810 PMCid:PMC1871727

American College of Radiology. Breast Imaging Reporting and Data System (BI-RADS), fourth ed. American College of Radiology, Reston, VA, 2004.

Nunes LW. Architectural-based interpretations of breast MR imaging. Magnetic resonance imaging clinics of North America. 2001; 9(2):303-20. PMid:11493421

Liberman L, Mason G, Morris EA, Dershaw DD. Does size matter? Positive predictive value of MRI-detected breast lesions as a function of lesion size. American Journal of Roentgenology. 2006; 186(2):426-30. https://doi.org/10.2214/AJR.04.1707 PMid:16423948

Pavilla A. Simultaneous quantification of diffusion and cerebral perfusion in magnetic resonance imaging: application to the diagnosis of ischemic stroke. Process the signal and the image. University Rennes, 2017. PMid:28608327

Hamid A, Ali WR. A comparative study between whole body magnetic resonance imaging and bone scintgraphy in detection of bone metastases in patients with known breast or lung cancer. The Egyptian Journal of Hospital Medicine. 2013; 31(762):200- 215. https://doi.org/10.12816/0000837

Galban CJ, Hoff BA, Chenevert TL, Ross BD. Diffusion MRI in early cancer therapeutic response assessment. NMR in biomedicine. 2017; 30(3):e3458. https://doi.org/10.1002/nbm.3458 PMid:26773848 PMCid:PMC4947029

Buijs M, Kamel IR, Vossen JA, Georgiades CS, Hong K, Geschwind JF. Assessment of Metastatic Breast Cancer Response to Chemoembolization with Contrast Agent-enhanced and Diffusion-weighted MR Imaging. Journal of Vascular and Interventional Radiology. 2007; 18(8):957-63. https://doi.org/10.1016/j.jvir.2007.04.025 PMid:17675611

Kruse SA, Smith JA, Lawrence AJ, Dresner MA, Manduca AJ, Greenleaf JF, Ehman RL. Tissue characterization using magnetic resonance elastography: preliminary results. Physics in Medicine & Biology. 2000; 45(6):1579. https://doi.org/10.1088/0031-9155/45/6/313

Plewes DB, Bishop J, Samani A, Sciarretta J. Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Physics in Medicine & Biology. 2000; 45(6):1591-1610. https://doi.org/10.1088/0031-9155/45/6/314

Sinkus R, Lorenzen J, Schrader D, Lorenzen M, Dargatz M, Holz D. High-resolution tensor MR elastography for breast tumour detection. Physics in Medicine & Biology. 2000; 45(6):1649-1664. https://doi.org/10.1088/0031-9155/45/6/317

McKnight AL, Kugel JL, Rossman PJ, Manduca A, Hartmann LC, Ehman RL. MR elastography of breast cancer: preliminary results. American journal of roentgenology. 2002; 178(6):1411-7. https://doi.org/10.2214/ajr.178.6.1781411 PMid:12034608

Xydeas T, Siegmann K, Sinkus R, Krainick-Strobel U, Miller S, Claussen CD. Magnetic resonance elastography of the breast: correlation of signal intensity data with viscoelastic properties. Investigative radiology. 2005; 40(7):412-20. https://doi.org/10.1097/01.rli.0000166940.72971.4a PMid:15973132

Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nature medicine. 2001; 7(11):1241-1244. https://doi.org/10.1038/nm1101-1241 PMid:11689890

Ambrosini V, Campana D, Tomassetti P, Fanti S. 68 Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. European journal of nuclear medicine and molecular imaging. 2012; 39(1):52-60. https://doi.org/10.1007/s00259-011-1989-4 PMid:22388622

Bison SM, Konijnenberg MW, Melis M, Pool SE, Bernsen MR, Teunissen JJ, Kwekkeboom DJ, de Jong M. Peptide receptor radionuclide therapy using radiolabeled somatostatin analogs: focus on future developments. Clinical and translational imaging. 2014; 2(1):55-66. https://doi.org/10.1007/s40336-014-0054-2 PMid:24765618 PMCid:PMC3991004

Meisamy S, Bolan PJ, Baker EH, Pollema MG, Le CT, Kelcz F, Lechner MC, Luikens BA, Carlson RA, Brandt KR, Amrami KK. Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology. 2005; 236(2):465-75. https://doi.org/10.1148/radiol.2362040836 PMid:16040903

Kurhanewicz J, Vigneron DB, Nelson SJ. Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia. 2000; 2(1-2):166-89. https://doi.org/10.1038/sj.neo.7900081 PMid:10933075 PMCid:PMC1531872

Lau CH, Tredwell GD, Ellis JK, Lam EW, Keun HC. Metabolomic characterisation of the effects of oncogenic PIK3CA transformation in a breast epithelial cell line. Scientific reports. 2017; 7:46079. https://doi.org/10.1038/srep46079 PMid:28393905 PMCid:PMC5385542

Yeung DK, Yang WT, Tse GM. Breast cancer: in vivo proton MR spectroscopy in the characterization of histopathologic subtypes and preliminary observations in axillary node metastases. Radiology. 2002; 225(1):190-7. https://doi.org/10.1148/radiol.2243011519 PMid:12355004

Haddadin IS, McIntosh A, Meisamy S, Corum C, Snyder AL, Powell NJ, Nelson MT, Yee D, Garwood M, Bolan PJ. Metabolite quantification and high?field MRS in breast cancer. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo. 2009; 22(1):65-76. https://doi.org/10.1002/nbm.1217 PMid:17957820 PMCid:PMC2628417

Bartella L, Huang W. Proton (1H) MR spectroscopy of the breast. Radiographics. 2007; 27(suppl_1):S241-52.

Hricak H. MRI and choline-PET of the prostate, Refresher Course 88 Deutsche RoentgenKongress. Fortschritte der Rontgenstrahlen, 2007; 179 (Suppl).

Gillies RJ, Morse DL. In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng. 2005; 7:287-326. https://doi.org/10.1146/annurev.bioeng.7.060804.100411 PMid:16004573

Weller GE, Wong MK, Modzelewski RA, Lu E, Klibanov AL, Wagner WR, Villanueva FS. Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine. Cancer research. 2005; 65(2):533-9. PMid:15695396

Younesi L, Karimi Dehkordi Z, Safarpour Lima Z, Amjad G. Ultrasound screening at 11-14 weeks of pregnancy for diagnosis of placenta accreta in mothers with a history of cesarean section. E ur J Transl Myol. 2018; 28(4):354-361. https://doi.org/10.4081/ejtm.2018.7772

Xu M, Wang LV. Photoacoustic imaging in biomedicine. Review of scientific instruments. 2006; 77(4):041101. https://doi.org/10.1063/1.2195024

Coover LR, Caravaglia G, Kuhn P. Scintimammography with dedicated breast camera detects and localizes occult carcinoma. Journal of Nuclear Medicine. 2004; 45(4):553-8. PMid:15073249

Rhodes DJ, O'Connor MK, Phillips SW, Smith RL, Collins DA. Molecular breast imaging: a new technique using technetium Tc 99m scintimammography to detect small tumors of the breast. Mayo Clinic Proceedings. 2005; 80(1):24-30. https://doi.org/10.1016/S0025-6196(11)62953-4

Brem RF, Rapelyea JA, Zisman G, Mohtashemi K, Raub J, Teal CB, Majewski S, Welch BL. Occult breast cancer: scintimammography with high-resolution breast-specific gamma camera in women at high risk for breast cancer. Radiology. 2005; 237(1):274-80. https://doi.org/10.1148/radiol.2371040758 PMid:16126919

Brem RF, Petrovitch I, Rapelyea JA, Young H, Teal C, Kelly T. Breast?specific gamma imaging with 99mTc?Sestamibi and magnetic resonance imaging in the diagnosis of breast cancer—a comparative study. The breast journal. 2007; 13(5):465-9. https://doi.org/10.1111/j.1524-4741.2007.00466.x PMid:17760667

O'connor MK, Phillips SW, Hruska CB, Rhodes DJ, Collins DA. Molecular breast imaging: advantages and limitations of a scintimammographic technique in patients with small breast tumors. The breast journal. 2007; 13(1):3-11. https://doi.org/10.1111/j.1524-4741.2006.00356.x PMid:17214787

Papantoniou V, Tsiouris S, Mainta E, Valotassiou V, Souvatzoglou M, Sotiropoulou M, Nakopoulou L, Lazaris D, Louvrou A, Melissinou M, Tzannetaki A. Imaging in situ breast carcinoma (with or without an invasive component) with technetium-99m pentavalent dimercaptosuccinic acid and technetium-99m 2-methoxy isobutyl isonitrile scintimammography. Breast Cancer Research. 2004; 7(1):R33. https://doi.org/10.1186/bcr948 PMid:15642168 PMCid:PMC1064097

Sweeney KJ, Sacchini V. Is there a Role for Magnetic Resonance Imaging in a Population?Based Breast Cancer Screening Program? The breast journal. 2007; 13(6):543-4. https://doi.org/10.1111/j.1524-4741.2007.00501.x PMid:17983392

Published

2019-03-15

How to Cite

1.
Safarpour Lima Z, Ebadi MR, Amjad G, Younesi L. Application of Imaging Technologies in Breast Cancer Detection: A Review Article. Open Access Maced J Med Sci [Internet]. 2019 Mar. 15 [cited 2024 Apr. 29];7(5):838-4. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2019.171

Issue

Section

F - Review Articles