A Comparing of Tp-Te Interval and Tp-Te/Qt Ratio in Patients with Preserved, Mid-Range and Reduced Ejection Fraction Heart Failure

Authors

  • Osman Son Department of Endocrinology, Private Acibadem Hospital, Eskisehir, Turkey
  • Yalcin Boduroglu Department of Cardiology, Ahi Evran University Education and Research Hospital, Kirsehir, Turkey

DOI:

https://doi.org/10.3889/oamjms.2019.186

Keywords:

Heart Failure, Transmural dispersion, Tp-Te interval, fQRS, Tp-Te/QT

Abstract

BACKGROUND: Heart failure (HF) is classified in three class: HF with preserved EF (HFpEF); normal or LVEF ≥ 50%, HF with reduced EF (HFrEF); LEVF < 40% and newly HF mid-range EF (HFmrEF); LVEF 40-49%. On Electrocardiography (ECG) T wave, Tpeak-Tend (Tp-Te) interval reflects transmural dispersion of repolarisation (TDR) which of these indexes have been proposed as predictors of risk for ventricular arrhythmia (VA) in many cardiac diseases.

AIM: Aim of this study to asses these indices of TDR among three HF class.

METHODS: Total of 192 patients were included in this study.

RESULTS: Many of indices like Tp-Te, Tp-Te/QT wasn’t different between groups (P > 0.05). But mean Q-Tpeak (QTp), S-Tend (S-Te) and S-Tpeak (S-Tp) were found significantly different between groups (P < 0.05). Again S-Te was found different according to having fragmented QRS (fQRS) on ECG (P = 0.031). Comparing to mitral inflow E/A parameters showed significant differences for Tp-Te, Tp-Tec, Tp-Te/QT, Tp-Te/QTc and Tp-Tec/QTc parameters. Finally, we found correlations between S-Te and white blood cell (WBC) (r = - 0.171; P = 0.037) and S-Tp and WBC (r = - 0.170; P = 0.038) and between S-Te and fQRS (r = 0.158; P = 0.031).

CONCLUSIONS: We didn’t find differences for many of indices of TDR like Tp-Te interval between groups except QTp, S-Te, S-Tp intervals. Also, S-Te and fQRS showed significant correlation. For prediction of ventricular arrhythmia and cardiovascular death newer indexes on ECG are needed to be established in the future which will make us facilitate to distinguish high risk patients.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Eur Heart J. 2016; 37:2129-2200. https://doi.org/10.1093/eurheartj/ehw128 PMid:27206819

Vedin O, Lam CSP, Koh AS, et al. Significance of ischemic heart disease in patients with heart failure and preserved, midrange, and reduced ejection fraction a nationwide cohort study. Circ Heart Fail. 2017; 10:e003875. https://doi.org/10.1161/CIRCHEARTFAILURE.117.003875 PMid:28615366

Lam CSP and Solomon SD. The middle child in heart failure: heart failure with mid-range ejection fraction (40–50%). European Journal of Heart Failure. 2014; 16:1049-1055. https://doi.org/10.1002/ejhf.159 PMid:25210008

Morin DP, Saad MN, Shams OM, et al. Relationships between the T-peak to T-end interval, ventricular tachyarrhythmia, and death in left ventricular systolic dysfunction. Europace. 2012; 14: 1172-1179. https://doi.org/10.1093/europace/eur426 PMid:22277646

Dogan M, Yiginer O, Degirmencioglu G, Un H. Transmural dispersion of repolarization: a complementary index for cardiac inhomogeneity. J Geriatr Cardiol. 2016; 13:99-100. PMid:26918022 PMCid:PMC4753021

Opthof T, Coronel R, Janse M.J. Is there a significant transmural gradient in repolarization time in the intact heart? Repolarization Gradients in the Intact. Heart. Circ Arrhythmia Electrophysiol. 2009; 2:89-96. https://doi.org/10.1161/CIRCEP.108.825356 PMid:19808447

Antzelevitch C, Sicouri S, Litovsky SH, Lukas A, Krishnan SC, Di Diego JM, Gintant GA, Liu DW. Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circulation Research. 1991; 69(6):1427-49. https://doi.org/10.1161/01.RES.69.6.1427 PMid:1659499

Panikkath R, Reinier K, Uy-Evanado A, et al. Prolonged tpeak-to-tend interval on the resting ECG is associated with increased risk of sudden cardiac death. Circ Arrhythm Electrophysiol. 2011; 4:441-447. https://doi.org/10.1161/CIRCEP.110.960658 PMid:21593198 PMCid:PMC3157547

Porthan K, Viitasalo M, Toivonen L, et al. Predictive value of electrocardiographic T-wave morphology parameters and T-wave peak to T-wave end interval for sudden cardiac death in the general population. Circ Arrhythm Electrophysiol. 2013; 6:690-696. https://doi.org/10.1161/CIRCEP.113.000356 PMid:23881778

Hevia JC, Antzelevitch C, Bárzaga FT, et al. Tpeak-tend and tpeak-tend dispersion as risk factors for ventricular tachycardia/ ventricular fibrillation in patients with the Brugada Syndrome. J Am Coll Cardiol. 2006; 47(9):1828–1834. https://doi.org/10.1016/j.jacc.2005.12.049 PMid:16682308 PMCid:PMC1474075

Shimizu M, Ino H, Yasuokeie K, et al. T-peak to T-end interval may be a better predictor of high-risk patients with hypertrophic cardiomyopathy associated with a cardiac troponin I mutation than QT dispersion. Clin Cardiol. 2002; 25(7):335-339. https://doi.org/10.1002/clc.4950250706 PMid:12109867

Yan GX and Antzelevitch C. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. Circulation 1998; 98(18):1928-1936. https://doi.org/10.1161/01.CIR.98.18.1928 PMid:9799215

Topilski I, Rogowski O, Rosso R, et al. The morphology of the QT interval predicts torsade de pointes during acquired bradyarrhythmias. J. Am. Coll. Cardiol. 2007; 49(3):320-328. https://doi.org/10.1016/j.jacc.2006.08.058 PMid:17239713

Karaman K, Karayakalı M, Erken E, et al. Assessment of myocardial repolarisation parameters in patients with familial Mediterranean fever. A Cardiovascular Journal of Africa. 2017; 28(3): 154-158. https://doi.org/10.5830/CVJA-2016-074 PMid:28759086 PMCid:PMC5558142

Chua KCM, Rusinaru C, Reinier K, et al. Tpeak-to-Tend interval corrected for heart rate: A more precise measure of increased sudden death risk? Towards an improved sudden death risk prediction. Heart Rhythm 2016; 13(11):2181-2185. https://doi.org/10.1016/j.hrthm.2016.08.022 PMid:27523774 PMCid:PMC5100825

Haarmark C, Hansen PR, Vedel-Larsen E, et al. The prognostic value of the Tpeak-Tend interval in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Journal of Electrocardiology 2011; 42(6):555-560. https://doi.org/10.1016/j.jelectrocard.2009.06.009 PMid:19643432

Ozcan S, Cakmak HA, Ikitimur B, et al. The prognostic significance of narrow fragmented QRS on admission electrocardiogram in patients hospitalized for decompensated systolic heart failure. Clin. Cardiol. 2013; 36(9):560-564. https://doi.org/10.1002/clc.22158 PMid:23754185

Igarashi M, Tada H, Yamasaki H, et al. Fragmented QRS is a novel risk factor for ventricular arrhythmic events after receiving cardiac resynchronization therapy in nonischemic cardiomyopathy. Journal of Cardiovascular Electrophysiology. 2016; 28(3):327-335. https://doi.org/10.1111/jce.13139 PMid:27925329

Brenyo A, Pietrasik G, Barsheshet A, et al. QRS fragmentation and the risk of sudden cardiac death in MADIT II. J Cardiovasc Electrophysiol. 2012; 23(12):1343-1348. https://doi.org/10.1111/j.1540-8167.2012.02390.x PMid:22805297

Ozcan F, Turak O, Canpolat U, et al. Fragmented QRS predicts the arrhythmic events in patients with heart failure undergoing ICD implantation for primary prophylaxis: more fragments more appropriate ICD shocks. Ann Noninvasive Electrocardiol. 2014; 19(4):351-357. https://doi.org/10.1111/anec.12141 PMid:24920012

Özyılmaz S, Akgül Ö, Uyarel H, et al. Assessment of the association between the presence of fragmented QRS and the predicted risk score of sudden cardiac death at 5 years in patients with hypertrophic cardiomyopathy. Anatol J Cardiol. 2017; 18:54-61. https://doi.org/10.14744/AnatolJCardiol.2017.7593

Sinha SK, Bhagat K, Asif M, et al. Fragmented QRS as a marker of electrical dyssynchrony to predict ınter-ventricular conduction defect by subsequent echocardiographic assessment in symptomatic patients of non-ıschemic dilated cardiomyopathy. Cardiol Res. 2016; 7(4):140-145. https://doi.org/10.14740/cr495w PMid:28197282 PMCid:PMC5295578

Xue JX, Gao W, Chen Y, et al. Study of repolarization heterogeneity and electrocardiographic morphology with a modeling approach. J Electrocardiol. 2008; 41:581-7. https://doi.org/10.1016/j.jelectrocard.2008.07.027 PMid:18804785

Yontar OC, Karaagac K, Tenekecioglu E, et al. Assessment of ventricular repolarization inhomogeneity in patients with mitral valve prolapse: value of T wave peak to end interval. Int J Clin Exp Med. 2014; 7(8):2173-2178. PMid:25232403 PMCid:PMC4161563

Bazett HC. An analysis of the time relation of electrocardiograms. Heart 1920; 7:353-367.

Molnar J, Weiss JS, Rosenthal JE. The missing second: what is the correct unit for the Bazett corrected QT interval? The American journal of cardiology. 1995; 75(7):537-8. https://doi.org/10.1016/S0002-9149(99)80603-1

Schiller NB, Shah PM, Crawford M, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of echocardiography committee on standards, subcommittee on quantitation of two-dimensional echocardiograms. J Am Soc Echocardiogr.1989; 2:358-367. https://doi.org/10.1016/S0894-7317(89)80014-8

Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009; 22:107-133. https://doi.org/10.1016/j.echo.2008.11.023 PMid:19187853

Opthof T, Coronel R, Janse MJ. Is there a significant transmural gradient in repolarization time in the intact heart? Repolarization gradients in the intact heart. Circ Arrhythmia Electrophysiol. 2009; 2:89-96. https://doi.org/10.1161/CIRCEP.108.825356 PMid:19808447

Antzelevitch C, Viskin S, Shimizu W, et al. Does Tpeak-Tend provide an index of transmural dispersion of repolarization? Heart Rhythm. 2007; 4(8):1114-1119. https://doi.org/10.1016/j.hrthm.2007.05.028 PMid:17675094 PMCid:PMC1994816

Conlona R, Tannera R, Davida S, et al. Evaluation of the Tp-Te interval, QTc and P-wave dispersion in patients with coronary artery Ectasia. Cardiol Res. 2017; 8(6):280-285. https://doi.org/10.14740/cr631w PMid:29317970 PMCid:PMC5755659

Tenekecioglu E, Karaagac K, Yontar OC, et al. Evaluation of Tp-Te interval and Tp-Te,/QT ratio in patients with coronary slow flow Tp-Te/QT ratio and coronary slow flow. Eurasian J Med. 2015; 47:104-8. https://doi.org/10.5152/eurasianjmed.2015.72 PMid:26180494 PMCid:PMC4494544

Zumhagen S, Zeidler EM, Stallmeyer B, et al. Tpeak–Tend interval and Tpeak–Tend/QT ratio in patients with Brugada syndrome. Europace. 2016; 18:1866-1872. PMid:26941339

Akboğa MK, Balcı KG, Yılmaz S, et al. Tp-e interval and Tp-e/QTc ratio as novel surrogate markers for prediction of ventricular arrhythmic events in hypertrophic cardiomyopathy. Anatol J Cardiol. 2017; 18:48-53. https://doi.org/10.14744/AnatolJCardiol.2017.7581

Lellouche N, De Diego C, Akopyan G, et al. Changes and predictive value of dispersion of repolarization parameters for appropriate therapy in patients with biventricular implantable cardioverter-defibrillators. Heart Rhythm. 2007;4: 1274-1283. https://doi.org/10.1016/j.hrthm.2007.06.012 PMid:17905332

Xue C, Hua W, Chi C, et al. Acute and chronic changes and predictive value of tpeak tend for ventricular arrhythmia risk in cardiac resynchronization therapy patients. Chin Med J. 2016; 129:2204-2211. https://doi.org/10.4103/0366-6999.189916 PMid:27625093 PMCid:PMC5022342

Published

2019-03-13

How to Cite

1.
Son O, Boduroglu Y. A Comparing of Tp-Te Interval and Tp-Te/Qt Ratio in Patients with Preserved, Mid-Range and Reduced Ejection Fraction Heart Failure. Open Access Maced J Med Sci [Internet]. 2019 Mar. 13 [cited 2024 Mar. 28];7(5):752-9. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2019.186

Issue

Section

B - Clinical Sciences