Resistance Trend, Antibiotic Utilization and Mortality in Patients with E. coli Bacteraemia

Authors

  • Amirreza Najmi Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
  • Fateme Karimi Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
  • Vijayanarayan Kunhikatta Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
  • Muralidhar Varma Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
  • Sreedharan Nair Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India

DOI:

https://doi.org/10.3889/oamjms.2019.223

Keywords:

Resistance pattern, E. coli, ESBL producing, Empirical therapy, Rational antibiotic use, Mortality

Abstract

BACKGROUND: Incidence of bacteraemia and driving concerns about antibiotic resistance is increasing globally. Risk factors for developing antimicrobial resistance are antibiotic overuse, incorrect dosing and extended duration of administration.

AIM: This study was conducted to examine the prescription and susceptibility pattern of antibiotics in bacteraemia patients with ESBL producing and Non-ESBL-producing E. coli and their correlation with mortality.

METHODS: Data were collected from medical records of the patients aged 18 years and above, diagnosed with E. coli bacteremia from January 2013 through July 2017. Institutional ethics committee approval was obtained before the study (IEC 483/2017). Cumulative sensitivity/resistance pattern of isolated microorganisms and DDD/100 bed days of prescribed antibiotics were obtained.

RESULTS: 182 cases of E. coli bacteraemia were reviewed. 59.9% (n = 109) were male with an age range of 20-90 years. The mortality rate was 24.9% (n = 44). 55.5% (n = 101) of the isolated organisms were ESBL-producing. A high percentage of resistance to cephalosporins and fluoroquinolones were observed among the patients, and most of the identified isolates were sensitive to the aminoglycosides, carbapenems and β-lactam and β-lactamase inhibitor combinations (BLBLIs).

CONCLUSIONS: Frequent utilisation of the high-end antibiotics and increase in microorganism’s resistance to different antibiotics can lead to a worrisome level. Local antibiotic resistance data and consumption policy are essential to prevent and slow down this process. We observed a descending resistance trend for amoxicillin-clavulanic acid combination in our setting to both the ESBL producing and non-producing.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

The evolving threat of antimicrobial resistance Options for action WHO Library Cataloguing-in-Publication Data.

Hecker MT, Aron DC, Patel NP, Lehmann MK, Donskey CJ. Unnecessary Use of Antimicrobials in Hospitalized Patients. Arch Intern Med. 2003; 163(8):972. https://doi.org/10.1001/archinte.163.8.972 PMid:12719208

Solomon DH, Van Houten L, Glynn RJ, Baden L, Curtis K, Schrager H, et al. Academic Detailing to Improve Use of Broad-Spectrum Antibiotics at an Academic Medical Center. Arch Intern Med. 2001; 161(15):1897. https://doi.org/10.1001/archinte.161.15.1897 PMid:11493132

McGowan JE. Do intensive hospital antibiotic control programs prevent the spread of antibiotic resistance? Infect Control Hosp Epidemiol. 1994; 15(7):478-83. https://doi.org/10.2307/30148498 PMid:7963440

Simpson SA, Wood F, Butler CC. General practitioners' perceptions of antimicrobial resistance: a qualitative study. J Antimicrob Chemother. 2006; 59(2):292-6. https://doi.org/10.1093/jac/dkl467 PMid:17110392

Kumar S, Little P, Britten N. Why do general practitioners prescribe antibiotics for sore throat? Grounded theory interview study. BMJ. 2003; 326(7381):138. https://doi.org/10.1136/bmj.326.7381.138 PMid:12531847 PMCid:PMC140007

Welschen I, Kuyvenhoven MM, Hoes AW, Verheij TJM. Effectiveness of a multiple intervention to reduce antibiotic prescribing for respiratory tract symptoms in primary care: randomised controlled trial. BMJ. 2004; 329(7463):431. https://doi.org/10.1136/bmj.38182.591238.EB PMid:15297305 PMCid:PMC514206

Goossens H, Ferech M, Vander Stichele R, Elseviers M. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet. 2005; 365(9459):579-87. https://doi.org/10.1016/S0140-6736(05)70799-6

uz Zaman T, Aldrees M, Al Johani SM, Alrodayyan M, Aldughashem FA, Balkhy HH. Multi-drug carbapenem-resistant Klebsiella pneumoniae infection carrying the OXA-48 gene and showing variations in outer membrane protein 36 causing an outbreak in a tertiary care hospital in Riyadh, Saudi Arabia. Int J Infect Dis. 2014; 28:186-92. https://doi.org/10.1016/j.ijid.2014.05.021 PMid:25245001

Shibl A, Al-Agamy M, Memish Z, Senok A, Khader SA, Assiri A. The emergence of OXA-48- and NDM-1-positive Klebsiella pneumoniae in Riyadh, Saudi Arabia. Int J Infect Dis. 2013; 17(12):e1130-3. https://doi.org/10.1016/j.ijid.2013.06.016 PMid:24021566

Elabd FM, Al-Ayed MSZ, Asaad AM, Alsareii SA, Qureshi MA, Musa HA-A. Molecular characterization of oxacillinases among carbapenem-resistant Acinetobacter baumannii nosocomial isolates in a Saudi hospital. J Infect Public Health. 2015; 8(3):242-7. https://doi.org/10.1016/j.jiph.2014.10.002 PMid:25466594

Russo TA, Johnson JR. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect. 2003; 5(5):449-56. https://doi.org/10.1016/S1286-4579(03)00049-2

Ron EZ. Distribution and evolution of virulence factors in septicemic Escherichia coli. Int J Med Microbiol. 2010; 300(6):367-70. https://doi.org/10.1016/j.ijmm.2010.04.009 PMid:20510649

Wiles TJ, Kulesus RR, Mulvey MA. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol. 2008; 85(1):11-9. https://doi.org/10.1016/j.yexmp.2008.03.007 PMid:18482721 PMCid:PMC2595135

de Kraker MEA, Jarlier V, Monen JCM, Heuer OE, van de Sande N, Grundmann H. The changing epidemiology of bacteraemias in Europe: trends from the European Antimicrobial Resistance Surveillance System. Clin Microbiol Infect. 2013; 19(9):860-8. https://doi.org/10.1111/1469-0691.12028 PMid:23039210

Frakking FNJ, Rottier WC, Dorigo-Zetsma JW, van Hattem JM, van Hees BC, Kluytmans JAJW, et al. Appropriateness of empirical treatment and outcome in bacteremia caused by extended-spectrum-β-lactamase-producing bacteria. Antimicrob Agents Chemother. 2013; 57(7):3092-9. https://doi.org/10.1128/AAC.01523-12 PMid:23612198 PMCid:PMC3697326

Tamma PD, Savard P, Pál T, Sonnevend Ã, Perl TM, Milstone AM. An Outbreak of Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae in a Neonatal Intensive Care Unit. Infect Control Hosp Epidemiol. 2012; 33(06):631-4. https://doi.org/10.1086/665715 PMid:22561722

Menashe G, Borer A, Yagupsky P, Peled N, Gilad J, Fraser D, et al. Clinical significance and impact on mortality of extended-spectrum beta lactamase-producing Enterobacteriaceae isolates in nosocomial bacteremia. Scand J Infect Dis. 2001; 33(3):188-93. https://doi.org/10.1080/00365540151060806 PMid:11303808

Endimiani A, Luzzaro F, Brigante G, Perilli M, Lombardi G, Amicosante G, et al. Proteus mirabilis bloodstream infections: risk factors and treatment outcome related to the expression of extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2005; 49(7):2598-605. https://doi.org/10.1128/AAC.49.7.2598-2605.2005 PMid:15980325 PMCid:PMC1168714

Kang C-I, Kim S-H, Park WB, Lee K-D, Kim H-B, Kim E-C, et al. Bloodstream infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for mortality and treatment outcome, with special emphasis on antimicrobial therapy. Antimicrob Agents Chemother. 2004; 48(12):4574-81. https://doi.org/10.1128/AAC.48.12.4574-4581.2004 PMid:15561828 PMCid:PMC529180

Paterson DL, Ko W-C, Gottberg A Von, Mohapatra S, Casellas JM, Goossens H, et al. International Prospective Study of Klebsiella pneumoniae Bacteremia: Implications of Extended-Spectrum β-Lactamase Production in Nosocomial Infections. Ann Intern Med. 2004; 140(1):26. https://doi.org/10.7326/0003-4819-140-1-200401060-00008 PMid:14706969

Anderson DJ, Engemann JJ, Harrell LJ, Carmeli Y, Reller LB, Kaye KS. Predictors of mortality in patients with bloodstream infection due to ceftazidime-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother. 2006; 50(5):1715-20. https://doi.org/10.1128/AAC.50.5.1715-1720.2006 PMid:16641440 PMCid:PMC1472233

Hyle EP, Lipworth AD, Zaoutis TE, Nachamkin I, Bilker WB, Lautenbach E. Impact of Inadequate Initial Antimicrobial Therapy on Mortality in Infections Due to Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae. Arch Intern Med. 2005; 165(12):1375. https://doi.org/10.1001/archinte.165.12.1375 PMid:15983286

Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, et al. Predictors of Mortality in Bloodstream Infections Caused by Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Importance of Combination Therapy. Clin Infect Dis. 2012; 55(7):943-50. https://doi.org/10.1093/cid/cis588 PMid:22752516

Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum -lactamases: a systematic review and meta-analysis. J Antimicrob Chemother. 2012; 67(12):2793-803. https://doi.org/10.1093/jac/dks301 PMid:22915465

Hsu AJ, Tamma PD. Treatment of Multidrug-Resistant Gram-Negative Infections in Children. Clin Infect Dis. 2014; 58(10):1439-48. https://doi.org/10.1093/cid/ciu069 PMid:24501388

Paterson DL, Ko W-C, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, et al. Antibiotic Therapy for Klebsiella pneumoniae Bacteremia: Implications of Production of Extended-Spectrum -Lactamases. Clin Infect Dis. 2004; 39(1):31-7. https://doi.org/10.1086/420816 PMid:15206050

Perez F, Bonomo RA. Can We Really Use ss-Lactam/ss-Lactam Inhibitor Combinations for the Treatment of Infections Caused by Extended-Spectrum ss-Lactamase-Producing Bacteria? Clin Infect Dis. 2012; 54(2):175-7. https://doi.org/10.1093/cid/cir793 PMid:22057699

Leclercq R, Cantón R, Brown DFJ, Giske CG, Heisig P, MacGowan AP, et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect. 2013; 19(2):141-60. https://doi.org/10.1111/j.1469-0691.2011.03703.x PMid:22117544

Rodriguez-Bano J, Navarro MD, Retamar P, Picon E, Pascual A. -Lactam/ -Lactam Inhibitor Combinations for the Treatment of Bacteremia Due to Extended-Spectrum -Lactamase-Producing Escherichia coli: A Post Hoc Analysis of Prospective Cohorts. Clin Infect Dis. 2012; 54(2):167-74. https://doi.org/10.1093/cid/cir790 PMid:22057701

Hoban DJ, Lascols C, Nicolle LE, Badal R, Bouchillon S, Hackel M, et al. Antimicrobial susceptibility of Enterobacteriaceae, including molecular characterization of extended-spectrum beta-lactamase-producing species, in urinary tract isolates from hospitalized patients in North America and Europe: results from the SMART study 2009-2010. Diagn Microbiol Infect Dis. 2012; 74(1):62-7. https://doi.org/10.1016/j.diagmicrobio.2012.05.024 PMid:22763019

Chen Y-H, Hsueh P-R, Badal RE, Hawser SP, Hoban DJ, Bouchillon SK, et al. Antimicrobial susceptibility profiles of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections in the Asia-Pacific region according to currently established susceptibility interpretive criteria. J Infect. 2011; 62(4):280-91. https://doi.org/10.1016/j.jinf.2011.02.009 PMid:21382411

Marchaim D, Sunkara B, Lephart PR, Gudur UM, Bhargava A, Mynatt RP, et al. Extended-Spectrum β-Lactamase Producers Reported as Susceptible to Piperacillin-Tazobactam, Cefepime, and Cefuroxime in the Era of Lowered Breakpoints and No Confirmatory Tests. Infect Control Hosp Epidemiol. 2012; 33(08):853-5. https://doi.org/10.1086/666632 PMid:22759556

Wells BG, Di Piro JT, Schwinghammer TL. CVD. Sepsis and Septic Shock. In: Joseph T. DiPiro, editor. Pharmacotherapy Handbook. 9th ed. Newyork: McGraw-Hill Education, 2014:427-33. PMid:25234570 PMCid:PMC4268415

Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am J Clin Pathol. 1966; 45(4_ts):493-6.

Horner C, Fawley W, Morris K, Parnell P, Denton M, Wilcox M. Escherichia coli bacteraemia: 2 years of prospective regional surveillance (2010-12). J Antimicrob Chemother. 2014; 69(1):91-100. https://doi.org/10.1093/jac/dkt333 PMid:24003184

Hristea A, Olaru ID, Adams-Sapper S, Riley LW. Characterization of ESBL-producing Escherichia coli and Klebsiella pneumoniae from bloodstream infections in three hospitals in Bucharest, Romania: a preliminary study. Infect Dis (Auckl). 2015; 47(1):46-51. https://doi.org/10.3109/00365548.2014.959043 PMid:25365029

Published

2019-04-14

How to Cite

1.
Najmi A, Karimi F, Kunhikatta V, Varma M, Nair S. Resistance Trend, Antibiotic Utilization and Mortality in Patients with E. coli Bacteraemia. Open Access Maced J Med Sci [Internet]. 2019 Apr. 14 [cited 2024 May 5];7(7):1119-23. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2019.223

Issue

Section

B - Clinical Sciences

Most read articles by the same author(s)