Role of Rehabilitation in Neural Plasticity

Authors

  • Andromeda Keci University of Medicine, Tirana, Albania
  • Klejda Tani University of Medicine, Tirana, Albania
  • Joana Xhema University of Medicine, Tirana, Albania

DOI:

https://doi.org/10.3889/oamjms.2019.295

Keywords:

cortical reorganization, neuroplasticity, aerobic fitness, video games, rehabilitation

Abstract

AIM: Verifying if physical therapy, neurostimulation techniques, aerobic fitness and video games can induce neural plasticity making it possible for cortical reorganisation, motor recovery in patients, improvement of cognitive functions and transfer of spatial knowledge in the everyday living environment.

METHODS: There have been revised scientific articles respectively focused on the role of pain, the role of physical therapy, neurostimulation techniques and video games in cortical reorganisation. Articles related to the role of pain have taken in the study subjects with pain, to observe its role in cortical reorganisation. Studies related to physical therapy and neurostimulation techniques after cerebrovascular accident consisted of the involvement of these subjects which exposed to different neurostimulations. Also, related to cognition and video games subjects exposed to these interventions for cognitive benefits.

RESULTS: From all articles reviewed there have been effective results of neurostimulation techniques, aerobic fitness and video games in cortical reorganisation inducing neural plasticity (p < 0.05) toward motor recovery, improvement of executive functions and transfer of spatial knowledge.

CONCLUSION: Rehabilitation through locomotor training and neurostimulation techniques, improves mobility in subjects after a cerebrovascular accident due to cortical reorganisation. Also, through aerobic fitness and video games, there have been improvements in cognitive functions. This way, rehabilitation dedicated to the promotion of well-being and health urges beneficial neuroplastic changes in brain corresponding in functional improvement.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nature medicine. 1998; 4(11):1313. https://doi.org/10.1038/3305 PMid:9809557

Hebb DO. The organization of behavior; a neuropsycholocigal theory. A Wiley Book in Clinical Psychology. 1949:62-78.

Boudreau SA, Farina D, Falla D. The role of motor learning and neuroplasticity in designing rehabilitation approaches for musculoskeletal pain disorders. Manual therapy. 2010; 15(5):410-4. https://doi.org/10.1016/j.math.2010.05.008 PMid:20615749

Tsao H, Galea MP, Hodges PW. Reorganization of the motor cortex is associated with postural control deficits in recurrent low back pain. Brain. 2008; 131(8):2161-71. https://doi.org/10.1093/brain/awn154 PMid:18669505

Pleger B, Tegenthoff M, Schwenkreis P, Janssen F, Ragert P, Dinse HR, Völker B, Zenz M, Maier C. Mean sustained pain levels are linked to hemispherical side-to-side differences of primary somatosensory cortex in the complex regional pain syndrome I. Experimental brain research. 2004; 155(1):115-9. https://doi.org/10.1007/s00221-003-1738-4 PMid:15064892

Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumers N, Larbig W, Taub E. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995 Jun;375(6531):482-484. https://doi.org/10.1038/375482a0 PMid:7777055

Lotze M, Flor H, Grodd W, Larbig W, Birbaumer N. Phantom movements and pain An fMRI study in upper limb amputees. Brain. 2001; 124(11):2268-77. https://doi.org/10.1093/brain/124.11.2268 PMid:11673327

Seminowicz DA, Wideman TH, Naso L, Hatami-Khoroushahi Z, Fallatah S, Ware MA, Jarzem P, Bushnell MC, Shir Y, Ouellet JA, Stone LS. Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. Journal of Neuroscience. 2011; 31(20):7540-50. https://doi.org/10.1523/JNEUROSCI.5280-10.2011 PMid:21593339

Wilkins KB, Owen M, Ingo C, Carmona C, Dewald J, Yao J. Neural plasticity in moderate to severe chronic stroke following a device-assisted task-specific arm/hand intervention. Frontiers in neurology. 2017; 8:284. https://doi.org/10.3389/fneur.2017.00284 PMid:28659863 PMCid:PMC5469871

Cauraugh JH, Kim SB. Stroke motor recovery: active neuromuscular stimulation and repetitive practice schedules. Journal of Neurology, Neurosurgery & Psychiatry. 2003; 74(11):1562-6. https://doi.org/10.1136/jnnp.74.11.1562 PMid:14617717 PMCid:PMC1738214

Pfurtscheller G, Neuper C. Motor imagery and direct brain-computer communication. Proceedings of the IEEE. 2001; 89(7):1123-34. https://doi.org/10.1109/5.939829

Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. International Journal of Neuropsychopharmacology. 2011; 14(8):1133-45. https://doi.org/10.1017/S1461145710001690 PMid:21320389

Hong X, Lu ZK, Teh I, Nasrallah FA, Teo WP, Ang KK, Phua KS, Guan C, Chew E, Chuang KH. Brain plasticity following MI-BCI training combined with tDCS in a randomized trial in chronic subcortical stroke subjects: a preliminary study. Scientific reports. 2017; 7(1):9222. https://doi.org/10.1038/s41598-017-08928-5 PMid:28835651 PMCid:PMC5569072

Landsmann B, Pinter D, Pirker E, Pichler G, Schippinger W, Weiss EM, Mathie G, Gattringer T, Fazekas F, Enzinger C. An exploratory intervention study suggests clinical benefits of training in chronic stroke to be paralleled by changes in brain activity using repeated fMRI. Clinical interventions in aging. 2016; 11:97-103. https://doi.org/10.2147/CIA.S95632 PMid:26869779 PMCid:PMC4734728

Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ, Webb A, Jerome GJ, Marquez DX, Elavsky S. Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences. 2004; 101(9):3316-21. https://doi.org/10.1073/pnas.0400266101 PMid:14978288 PMCid:PMC373255

Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, Sloan R, Gage FH, Brown TR, Small SA. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences. 2007; 104(13):5638-43. https://doi.org/10.1073/pnas.0611721104 PMid:17374720 PMCid:PMC1838482

Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR. Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences. 2011; 108(7):3017-22. https://doi.org/10.1073/pnas.1015950108 PMid:21282661 PMCid:PMC3041121

Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, Kramer AF. Aerobic fitness reduces brain tissue loss in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2003; 58(2):M176-80. https://doi.org/10.1093/gerona/58.2.M176

Clemenson GD, Stark CE. Virtual environmental enrichment through video games improves hippocampal-associated memory. Journal of Neuroscience. 2015; 35(49):16116-25. https://doi.org/10.1523/JNEUROSCI.2580-15.2015 PMid:26658864 PMCid:PMC4682779

Mayas J, Parmentier FB, Andrés P, Ballesteros S. Plasticity of attentional functions in older adults after non-action video game training: a randomized controlled trial. PLoS One. 2014; 9(3):e92269. https://doi.org/10.1371/journal.pone.0092269 PMid:24647551 PMCid:PMC3960226

Connors EC, Chrastil ER, Sánchez J, Merabet LB. Virtual environments for the transfer of navigation skills in the blind: a comparison of directed instruction vs. video game based learning approaches. Frontiers in human neuroscience. 2014; 8:223. https://doi.org/10.3389/fnhum.2014.00223

Looi CY, Duta M, Brem AK, Huber S, Nuerk HC, Kadosh RC. Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement. Scientific reports. 2016; 6:22003. https://doi.org/10.1038/srep22003 PMid:26902664 PMCid:PMC4763231

Karl A, Birbaumer N, Lutzenberger W, Cohen LG, Flor H. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. Journal of Neuroscience. 2001; 21(10):3609-18. https://doi.org/10.1523/JNEUROSCI.21-10-03609.2001 PMid:11331390

Soros P, Knecht S, Bantel C, Imai T, Wusten R, Pantev C. Functional reorganization of the human primary somatosensory cortex after acute pain demonstrated by magnetoencephalography. Neuroscience Letters. 2001; 298(3):195-8. https://doi.org/10.1016/S0304-3940(00)01752-3

Flor H, Braun C, Elbert T, Birbaumer N. Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neuroscience letters. 1997; 224(1):5-8. https://doi.org/10.1016/S0304-3940(97)13441-3

Krause P, Förderreuther S, Straube A. TMS motor cortical brain mapping in patients with complex regional pain syndrome type I. Clinical neurophysiology. 2006; 117(1):169-76. https://doi.org/10.1016/j.clinph.2005.09.012 PMid:16326140

Liepert J, Tegenthoff M, Malin JP. Changes of cortical motor area size during immobilization. Electroencephalography and clinical neurophysiology/electromyography and motor control. 1995; 97(6):382-6. https://doi.org/10.1016/0924-980X(95)00194-P

Ramachandran VS, Rogers-Ramachandran D. Synaesthesia in phantom limbs induced with mirrors. Proceedings of the Royal Society of London. Series B: Biological Sciences. 1996; 263(1369):377-86. https://doi.org/10.1098/rspb.1996.0058 PMid:8637922

Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, Bazzocchi M, Di Prampero PE. Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. Journal of Neuroscience. 1996;1 6(23):7688-98. https://doi.org/10.1523/JNEUROSCI.16-23-07688.1996 PMid:8922425

Scholz J, Klein MC, Behrens TE, Johansen-Berg H. Training induces changes in white-matter architecture. Nature neuroscience. 2009; 12(11):1370. https://doi.org/10.1038/nn.2412 PMid:19820707 PMCid:PMC2770457

Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, Rigonatti SP, Marcolin MA, Freedman SD, Nitsche MA, Pascual-Leone A. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 2005; 16(14):1551-5. https://doi.org/10.1097/01.wnr.0000177010.44602.5e PMid:16148743

Ang KK, Guan C, Chua KS, Ang BT, Kuah C, Wang C, Phua KS, Chin ZY, Zhang H. A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009:5981-5984.

Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, ... Colcombe A. Ageing, fitness and neurocognitive function. Nature, 1999; 400(6743):418-419. https://doi.org/10.1038/22682 PMid:10440369

Murdoch K, Buckley JD, McDonnell MN. The effect of aerobic exercise on neuroplasticity within the motor cortex following stroke. PloS one. 2016; 11(3):e0152377. https://doi.org/10.1371/journal.pone.0152377 PMid:27018862 PMCid:PMC4809484

Adlaf EW, Vaden RJ, Niver AJ, Manuel AF, Onyilo VC, Araujo MT, Dieni CV, Vo HT, King GD, Wadiche JI, Overstreet-Wadiche L. Adult-born neurons modify excitatory synaptic transmission to existing neurons. Elife. 2017; 6:e19886. https://doi.org/10.7554/eLife.19886 PMid:28135190 PMCid:PMC5279947

Oei AC, Patterson MD. Enhancing cognition with video games: a multiple game training study. PLoS One. 2013; 8(3):e58546. https://doi.org/10.1371/journal.pone.0058546 PMid:23516504 PMCid:PMC3596277

Basak C, Boot WR, Voss MW, Kramer AF. Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and aging. 2008; 23(4):765-77. https://doi.org/10.1037/a0013494 PMid:19140648 PMCid:PMC4041116

Burgess N, Maguire EA, O'Keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002; 35(4):625-41. https://doi.org/10.1016/S0896-6273(02)00830-9

Published

2019-05-14

How to Cite

1.
Keci A, Tani K, Xhema J. Role of Rehabilitation in Neural Plasticity. Open Access Maced J Med Sci [Internet]. 2019 May 14 [cited 2024 Apr. 26];7(9):1540-7. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2019.295

Issue

Section

F - Review Articles