The Levels of the Human-β-Defensin-2 and LL-37 in the Sputum of Children with Cystic Fibrosis: A Case–control Study and Literature Review

Authors

  • Oksana Ishchenko Department of Microbiology, Virology, Immunology, and Epidemiology, Dnipro State Medical University, Dnipro, Ukraine https://orcid.org/0000-0001-7677-5062
  • Irina Koshevaya Department of Microbiology, Virology, Immunology, and Epidemiology, Dnipro State Medical University, Dnipro, Ukraine
  • Irina Zhernosekova Department of Microbiology, Virology, Immunology, and Epidemiology, Dnipro State Medical University, Dnipro, Ukraine https://orcid.org/0000-0001-6516-715X
  • Vira Garets Department of Fundamental Disciplines with a Course of Traditional and Non-Traditional Medicine, Dnipro Medical Institute of Traditional and Non-traditional Medicine, Dnipro, Ukraine https://orcid.org/0000-0003-0141-1736
  • Dmytro Stepanskyi Department of Microbiology, Virology, Immunology, and Epidemiology, Dnipro State Medical University, Dnipro, Ukraine https://orcid.org/0000-0001-6350-8176

DOI:

https://doi.org/10.3889/oamjms.2022.10835

Keywords:

Antimicrobial peptides, Cathelicidin LL-37, Defensins, Pseudomonas aeruginosa

Abstract

BACKGROUND: Cystic fibrosis (CF) is a genetic disorder with an autosomal-recessive type of inheritance. Based on their host-defending and pro-inflammatory functions, antimicrobial peptides (AMPs) likely have one of the central roles in the pathogenesis of lung disease in CF.

AIM: The purpose of the study was to measure the concentration of AMPs in the sputum of children with CF and evaluate any correlation with a bacterial profile of the lungs.

METHODS: Lung colonization was evaluated using a culture-dependent method, sputum was utilized. A sandwich-ELISA was used to measure hBD-2 and hCAP-18/LL-37 in the sputum.

RESULTS: There were 27 children enrolled in the study group, median age of inclusion was 11.4 (8.5; 14.8) years old. The control group consisted of 14 children, 11.6 (8.6; 12.6) years old. The concentration of AMPs was not correlating with participants` age (rs = −0.286, p = 0.148 – defensin hDB-2; rs = −0.084, p = 0.676 – cathelicidin hCAP-18/LL-37). The concentration of hBD-2 was from 64.01 to 813.61 pg/mL. The concentration of hCAP-18/LL-37 was from 3.24 to 35.98 ng/mL. There were significant differences in the content of AMPs on respiratory samples between study and control group (U = 976.5, p = 0.001 – for hBD-2; U = 1080.5, p < 0.001). The correlation between current infection Pseudomonas aeruginosa and concentration of hBD-2 (rs = 0.167; p = 0.406) was not found. However, the presence of P. aeruginosa correlated with density of neutrophilic infiltration (rs = 0.622; p = 0.001). The concentration of hBD-2 showed direct medium correlation with total cells count (rs = 0.881, p < 0.001). Correlation between current infection P. aeruginosa and concentration of hCAP-18/LL-37 (rs = 0.788; p < 0.001) was observed. With increases in total cell count and relative neutrophils count, the concentration of hCAP-18/LL-37 was increased and the power of the association was medium (rs = 0.453; p = 0,018; rs = 0,592; p = 0,001). The correlation between concentrations of hBD-2 and hCAP-18/LL-37 (rs = 0.316, p > 0.1) was not found.

CONCLUSIONS: Measured AMPs correlated with cellular inflammatory markers and, probably, their overexpression is dedicated to stimulating a cellular component of innate immune response; there was no correlation between bacterial colonization of lungs and levels of hBD-2, so our findings sustain that P. aeruginosa is a leading but non-single contributor to persistent local inflammation in polymicrobial lungs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Blanchard AC, Waters VJ. Microbiology of cystic fibrosis airway disease. Semin Respir Crit Care Med. 2019;40(6):727-36. https://doi.org/10.1055/s-0039-1698464 PMid:31887768 DOI: https://doi.org/10.1055/s-0039-1698464

Spoonhower KA, Davis PB. Epidemiology of cystic fibrosis. Clin Chest Med. 2016;37(1):1-8. https://doi.org/10.1016/j.ccm.2015.10.002 PMid:26857763 DOI: https://doi.org/10.1016/j.ccm.2015.10.002

Alonso B, Fernández-Barat L, Di Domenico EG, Marín M, Cercenado E, Merino I, et al. Characterization of the virulence of Pseudomonas aeruginosa strains causing ventilator-associated pneumonia. BMC Infect Dis. 2020;20(1):909. https://doi.org/10.1186/s12879-020-05534-1 PMid:33261585 DOI: https://doi.org/10.1186/s12879-020-05534-1

Bhagirath AY, Li Y, Somayajula D, Dadashi M, Badr S, Duan K. Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm Med. 2016;16(1):174. https://doi.org/10.1186/s12890-016-0339-5 PMid:27919253 DOI: https://doi.org/10.1186/s12890-016-0339-5

Geitani R, Moubareck CA, Xu Z, Sarkis DK, Touqui L. Expression and roles of antimicrobial peptides in innate defense of airway mucosa: Potential implication in cystic fibrosis. Front Immunol. 2020;11:1198. https://doi.org/10.3389/fimmu.2020.01198 PMid:32695100 DOI: https://doi.org/10.3389/fimmu.2020.01198

Cabak A, Hovold G, Petersson AC, Ramstedt M, Påhlman LI. Activity of airway antimicrobial peptides against cystic fibrosis pathogens. Pathog Dis. 2020;78(7):ftaa048. https://doi.org/10.1093/femspd/ftaa048 PMid:32857857 DOI: https://doi.org/10.1093/femspd/ftaa048

Hiemstra PS. The role of epithelial beta-defensins and cathelicidins in host defense of the lung. Exp Lung Res. 2007;33(10):537-42. https://doi.org/10.1080/01902140701756687 PMid:18075828 DOI: https://doi.org/10.1080/01902140701756687

Cieślik M, Bagińska N, Górski A, Jończyk-Matysiak E. Human β-defensin 2 and its postulated role in modulation of the immune response. Cells. 2021;10(11):2991. https://doi.org/10.3390/cells10112991 PMid:34831214 DOI: https://doi.org/10.3390/cells10112991

Zhang C, Yang M. Antimicrobial peptides: From design to clinical application. Antibiotics (Basel). 2022;11(3):349. https://doi.org/10.3390/antibiotics11030349 PMid:35326812 DOI: https://doi.org/10.3390/antibiotics11030349

Gilligan PH. Infections in patients with cystic fibrosis: Diagnostic microbiology update. Clin Lab Med. 2014;34(2):197-217. https://doi.org/10.1016/j.cll.2014.02.001 PMid:24856524 DOI: https://doi.org/10.1016/j.cll.2014.02.001

Hitzenbichler F, Bauernfeind S, Salzberger B, Schmidt B, Wenzel JJ. Comparison of throat washings, nasopharyngeal swabs and oropharyngeal swabs for detection of SARS-CoV-2. Viruses. 2021;13(4):653. https://doi.org/10.3390/v13040653 PMid:33920072 DOI: https://doi.org/10.3390/v13040653

Burns JL, Rolain JM. Culture-based diagnostic microbiology in cystic fibrosis: Can we simplify the complexity? J Cyst Fibros. 2014;13(1):1-9. https://doi.org/10.1016/j.jcf.2013.09.004 PMid:24094376 DOI: https://doi.org/10.1016/j.jcf.2013.09.004

Cornaglia G, Courcol R, Herrmann JL, Kahlmeter G, Peigue- Lafeuille H, Vila J. European Manual of Clinical Microbiology. Basel: European Society of Clinical Microbiology and Infectious; 2012.

Mcclean M, Stanley T, Goldsmith CE, Millar BC, McClurg B, Elborn JS, et al. Determination of optimum incubation time for release of bacteria from sputum of patients with cystic fibrosis using dithiothreitol (sputasol). Br J Biomed Sci. 2010;67(2):89-91. https://doi.org/10.1080/09674845.2010.11978195 PMid:20669768 DOI: https://doi.org/10.1080/09674845.2010.11978195

Elabscience. Human LL-37(Antibacterial Protein LL-37) ELISA Kit: Manual. Wuhan: Elabscience; 2022. Available from: https://www.elabscience.com/p-human_ll_37_antibacterial_pr-otein_ll_37_elisa_kit-19823.html [Last accessed on 2022 Apr 10].

Elabscience. Human DEFβ2/DEFB2(Defensin Beta 2) ELISA Kit: Manual. Wuhan: Elabscience; 2022. Available from: https://www.elabscience.com/p-human_defbeta2_defb2-_defensin_beta_2_elisa_kit-18658.html [Last accessed on 2022 Apr 10].

Yadav SK, Singh S, Gupta R. Biomedical Statistics. A Beginner’s Guide. Singapore: Springer; 2019. DOI: https://doi.org/10.1007/978-981-32-9294-9

Bucki R, Byfield FJ, Janmey PA. Release of the antimicrobial peptide LL-37 from DNA/F-actin bundles in cystic fibrosis sputum. Eur Respir J. 2007;29(4):624-32. https://doi.org/10.1183/09031936.00080806 PMid:17215317 DOI: https://doi.org/10.1183/09031936.00080806

Xie F, Zan Y, Zhang X, Zhang H, Jin M, Zhang W, et al. Differential abilities of mammalian cathelicidins to inhibit bacterial biofilm formation and promote multifaceted immune functions of neutrophils. Int J Mol Sci. 2020;21(5):1871. https://doi.org/10.3390/ijms21051871 PMid:32182913 DOI: https://doi.org/10.3390/ijms21051871

Chen CI, Schaller-Bals S, Paul KP, Wahn U, Bals R. Beta-defensins and LL-37 in bronchoalveolar lavage fluid of patients with cystic fibrosis. J Cyst Fibros. 2004;3(1):45-50. https://doi.org/10.1016/j.jcf.2003.12.008 PMid:15463886 DOI: https://doi.org/10.1016/j.jcf.2003.12.008

Xiao W, Hsu YP, Ishizaka A, Kirikae T, Moss RB. Sputum cathelicidin, urokinase plasminogen activation system components, and cytokines discriminate cystic fibrosis, COPD, and asthma inflammation. Chest. 2005;128(4):2316-26. https://doi.org/10.1378/chest.128.4.2316 PMid:16236890 DOI: https://doi.org/10.1378/chest.128.4.2316

Parducho KR, Beadell B, Ybarra TK, Bush M, Escalera E, Trejos AT, et al. The antimicrobial peptide human beta-defensin 2 inhibits biofilm production of Pseudomonas aeruginosa without compromising metabolic activity. Front Immunol. 2020;11:805. https://doi.org/10.3389/fimmu.2020.00805 PMid:32457749 DOI: https://doi.org/10.3389/fimmu.2020.00805

Dalcin D, Ulanova M. The role of human beta-defensin-2 in Pseudomonas aeruginosa pulmonary infection in cystic fibrosis patients. Infect Dis Ther. 2013;2(2):159-66. https://doi.org/10.1007/s40121-013-0015-5 PMid:25134478 DOI: https://doi.org/10.1007/s40121-013-0015-5

Bergsson G, Reeves EP, McNally P, Chotirmall SH, Greene CM, Greally P, et al. LL-37 complexation with glycosaminoglycans in cystic fibrosis lungs inhibits antimicrobial activity, which can be restored by hypertonic saline. J Immunol. 2009;183(1):543-51. https://doi.org/10.4049/jimmunol.0803959 PMid:19542465 DOI: https://doi.org/10.4049/jimmunol.0803959

Thursfield RM, Naderi K, Leaver N, Rosenthal M, Alton EW, Bush A, et al. Children with cystic fibrosis demonstrate no respiratory immunological, infective or physiological, consequences of Vitamin D deficiency. J Cyst Fibros. 2018;17(5):657-65. https://doi.org/10.1016/j.jcf.2018.02.011 PMid:29631774 DOI: https://doi.org/10.1016/j.jcf.2018.02.011

Cakir E, Torun E, Gedik AH, Umutoglu T, Aktas EC, Topuz U, et al. Cathelicidin and human β-defensin 2 in bronchoalveolar lavage fluid of children with pulmonary tuberculosis. Int J Tuberc Lung Dis. 2014;18(6):671-5. https://doi.org/10.5588/ijtld.13.0831 PMid:24903937 DOI: https://doi.org/10.5588/ijtld.13.0831

Hiratsuka T, Mukae H, Iiboshi H, Ashitani J, Nabeshima K, Minematsu T, et al. Increased concentrations of human beta-defensins in plasma and bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis. Thorax. 2003;58(5):425-30. https://doi.org/10.1136/thorax.58.5.425 PMid:12728165 DOI: https://doi.org/10.1136/thorax.58.5.425

Ross DJ, Cole AM, Yoshioka D, Park AK, Belperio JA, Laks H, et al. Increased bronchoalveolar lavage human β-defensin Type 2 in bronchiolitis obliterans syndrome after lung transplantation. Transplantation. 2004;78(8):1222-4. https://doi.org/10.1097/01.tp.0000137265.18491.75 PMid:15502724 DOI: https://doi.org/10.1097/01.TP.0000137265.18491.75

McCrae C, Zhou Y, Qian J, Zheng J, Tang R, Zheng J, et al. Human beta defensin 2 levels are reduced in the sputum of chronic obstructive pulmonary disease (COPD) patients and are associated with the occurrence of exacerbations. Am J Respir Care Med. 2016;193:А6334.

Liao Z, Dong J, Hu X, Wang T, Wan C, Li X, et al. Enhanced expression of human β-defensin 2 in peripheral lungs of patients with chronic obstructive pulmonary disease. Peptides. 2012;38(2):350-6. https://doi.org/10.1016/j.peptides.2012.09.013 PMid:23000304 DOI: https://doi.org/10.1016/j.peptides.2012.09.013

Pace E, Ferraro M, Minervini MI, Vitulo P, Pipitone L, Chiappara G, et al. Beta defensin-2 is reduced in central but not in distal airways of smoker COPD patients. PLoS One. 2012;7(3):e33601. https://doi.org/10.1371/journal.pone.0033601 PMid:22438960 DOI: https://doi.org/10.1371/journal.pone.0033601

Vilenskyi Y, Bordiy T, Shvaratska O, Bolbot Y. The content of antimicrobial peptides-human β-defensin 2 and cathelicidin-in the secretion of the mucous membrane of the upper respiratory tract of children with bronchial asthma and allergic rhinitis. Pediatr Pol. 2021;96(1):23-30. https://doi.org/10.5114/polp.2021.104825 DOI: https://doi.org/10.5114/polp.2021.104825

Ghosh SK, Gerken TA, Schneider KM, Feng Z, McCormick TS, Weinberg A. Quantification of human β-defensin-2 and -3 in body fluids: Application for studies of innate immunity. Clin Chem. 2007;53(4):757-65. https://doi.org/10.1373/clinchem.2006.081430 PMid:17317882 DOI: https://doi.org/10.1373/clinchem.2006.081430

Barrera J, Tortolero S, Rivas A, Flores C, Gonzales E. Increased expression and levels of human β defensins (hBD2 and hBD4) in adults with dental caries. J Health Sci. 2013;3(2):88-97. https://doi.org/10.17532/-jhsci.2013.70 DOI: https://doi.org/10.17532/jhsci.2013.70

Kozubska A, Grzegorczyk J, Konieczka M, Szczepańska J. Analysis of the level of non-specific and specific immunity parameters in saliva of children with osteogenesis imperfecta and study of relationships between selected proteins, disease symptoms and sociodemographic factors. New Med. 2020;24(2):67-75. https://doi.org/10.25121/NewMed.2020.24.2.67 DOI: https://doi.org/10.25121/NewMed.2020.24.2.60

Davidopoulou S, Diza E, Menexes G, Kalfas S. Salivary concentration of the antimicrobial peptide LL-37 in children. Arch Oral Biol. 2012;57(7):865-9. https://doi.org/10.1016/j.archoralbio.2012.01.008 PMid:22336091 DOI: https://doi.org/10.1016/j.archoralbio.2012.01.008

Türkoğlu O, Emingil G, Eren G, Atmaca H, Kütükcüler N, Atilla G. Levels Of LL-37 antimicrobial peptide in the gingival crevicular fluid of young and middle-aged subjects with or without gingivitisj. Istanbul Univ Fac Dent. 2017;51(1):15-21. https://doi.org/10.17096/jiufd.42354 DOI: https://doi.org/10.17096/jiufd.42354

Downloads

Published

2022-10-08

How to Cite

1.
Ishchenko O, Koshevaya I, Zhernosekova I, Garets V, Stepanskyi D. The Levels of the Human-β-Defensin-2 and LL-37 in the Sputum of Children with Cystic Fibrosis: A Case–control Study and Literature Review. Open Access Maced J Med Sci [Internet]. 2022 Oct. 8 [cited 2024 Apr. 19];10(B):2367-73. Available from: https://oamjms.eu/index.php/mjms/article/view/10835

Similar Articles

You may also start an advanced similarity search for this article.