3D-Pharmacophore and Molecular Docking Studies for AcrAB-TolC Efflux Pump Potential Inhibitors from DrugBank and Traditional Chinese Medical Database

Authors

  • Thien-Vy Phan Department of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam https://orcid.org/0000-0002-7879-3827
  • Cao-Hoang-Hao Nguyen Department of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
  • Vu-Thuy-Vy Nguyen Department of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam https://orcid.org/0000-0001-6612-416X

DOI:

https://doi.org/10.3889/oamjms.2022.11081

Keywords:

AcrAB-TolC, Inhibitors, Escherichia coli, Pharmacophore, Molecular docking

Abstract

Background: Due to the widespread resistance to several antibiotics, the AcrAB-TolC tripartite efflux pump is the primary multi-drug efflux system of Escherichia coli. One of the most promising treatments since the discovery of efflux pump inhibitors is the combination of them with antibiotics.

AIM: Based on the efflux pump inhibitor database and the structure of AcrB, the research was created the virtual screening models with prediction capabilities for the efflux pump inhibitory effects of candidates from the DrugBank and Traditional Chinese Medical databank.

Methods: The pharmacophore models were developed by MOE 2015.10 software using a database of 119 efflux pump inhibitors discovered in 12 research publications and belonged to different structural classes. The binding site was found on the AcrB protein (PDB: 4DX7) by LeadIT 2.0.2 software that corresponds to the hydrophobic trap in the proximal pocket.

Results: The potential inhibitors which satisfied the pharmacophore model and had docking scores under -20 kJ.mol-1 have been established. In which, TCM_20290, DB00303, DB04642, DB08116, TCM_29530, and 2,5-dimethyl-3-O-D-glucopyranosyl-naphthol have the best docking scores of -32.76, -26.59, -26.14, -25.62, -24.88, and -22.82 kJ.mol-1, respectively.

Conclusions: After the screening, the result was obtained six compounds may be potential efflux pump inhibitors that can be used for additional studies. In the future, further in vitro and in vivo research should be required to confirm the effects of these compounds. The ongoing battle against antibiotic resistance shows promise with the finding on initiators that can obstruct AcrAB–TolC multidrug efflux pumps.

Keywords: AcrAB-TolC, inhibitors, Escherichia coli, pharmacophore, molecular docking.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM, Piddock LJ, et al. Multidrug efflux pumps: Structure, function and regulation. Nat Rev Microbiol. 2018;16(9):523-39. https://doi.org/10.1038/s41579-018-0048-6 PMid:30002505 DOI: https://doi.org/10.1038/s41579-018-0048-6

Thakur V, Uniyal A, Tiwari V. A comprehensive review on pharmacology of efflux pumps and their inhibitors in antibiotic resistance. Eur J Pharmacol. 2021;903:174151. https://doi.org/10.1016/j.ejphar.2021.174151 PMid:33964293 DOI: https://doi.org/10.1016/j.ejphar.2021.174151

Lamut A, Mašič LP, Kikelj D, Tomašič T. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Med Res Rev. 2019;39(6):2460-504. https://doi.org/10.1002/med.21591 PMid:31004360 DOI: https://doi.org/10.1002/med.21591

Rajapaksha P, Ojo I, Yang L, Pandeya A, Abeywansha T, Wei Y. Insight into the AcrAB-TolC complex assembly process learned from competition studies. Antibiotics (Basel). 2021;10(7):830. https://doi.org/10.3390/antibiotics10070830 PMid:34356751 DOI: https://doi.org/10.3390/antibiotics10070830

Sharma A, Gupta VK, Pathania R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J Med Res. 2019;149(2):129-45. https://doi.org/10.4103/ijmr.IJMR_2079_17 PMid:31219077 DOI: https://doi.org/10.4103/ijmr.IJMR_2079_17

Thorarensen A, Presley-Bodnar AL, Marotti KR, Boyle TP, Heckaman CL, Bohanon MJ, et al. 3-Arylpiperidines as potentiators of existing antibacterial agents. Bioorg Med Chem Lett. 2001;11(14):1903-6. https://doi.org/10.1016/S0960-894X(01)00330-4 PMid:11459657 DOI: https://doi.org/10.1016/S0960-894X(01)00330-4

Bohnert JA, Kern WV. Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob Agents Chemother. 2005;49(2):849-52. https://doi.org/10.1128/AAC.49.2.849-852.2005 PMid:15673787 DOI: https://doi.org/10.1128/AAC.49.2.849-852.2005

Nguyen ST, Kwasny SM, Ding X, Cardinale SC, McCarthy CT, Kim HS, et al. Structure-activity relationships of a novel pyranopyridine series of gram-negative bacterial efflux pump inhibitors. Bioorg Med Chem. 2015;23(9):2024-34. https://doi.org/10.1016/j.bmc.2015.03.016 PMid:25818767 DOI: https://doi.org/10.1016/j.bmc.2015.03.016

Abdali N, Parks JM, Haynes KM, Chaney JL, Green AT, Wolloscheck D, et al. Reviving antibiotics: Efflux pump inhibitors that interact with AcrA, a membrane fusion protein of the AcrABTolC multidrug efflux pump. ACS Infect Dis. 2017;3(1):89-98. https://doi.org/10.1021/acsinfecdis.6b00167 PMid:27768847 DOI: https://doi.org/10.1021/acsinfecdis.6b00167

Whalen KE, Poulson-Ellestad KL, Deering RW, Rowley DC, Mincer TJ. Enhancement of antibiotic activity against multidrugresistant bacteria by the efflux pump inhibitor 3, 4-dibromopyrrole-2, 5-dione isolated from a Pseudoalteromonas sp. J Nat Prod. 2015;78(3):402-12. https://doi.org/10.1021/np500775e PMid:25646964 DOI: https://doi.org/10.1021/np500775e

Hameed PS, Bharatham N, Katagihallimath N, Sharma S, Nandishaiah R, Shanbhag AP, et al. Nitrothiophene carboxamides, a novel narrow spectrum antibacterial series: Mechanism of action and Efficacy. Sci Rep. 2018;8(1):7263. https://doi.org/10.1038/s41598-018-25407-7 PMid:29740005 DOI: https://doi.org/10.1038/s41598-018-25407-7

Mosolygó T, Kincses A, Csonka A, Tönki ÁS, Witek K, Sanmartín C, et al. Selenocompounds as novel antibacterial agents and bacterial efflux pump inhibitors. Molecules. 2019;24(8):1487. https://doi.org/10.3390/molecules24081487 PMid:31014009 DOI: https://doi.org/10.3390/molecules24081487

Machado D, Fernandes L, Costa SS, Cannalire R, Manfroni G, Tabarrini O, et al. Mode of action of the 2-phenylquinoline efflux inhibitor PQQ4R against Escherichia coli. PeerJ. 2017;5:e3168. https://doi.org/10.7717/peerj.3168 PMid:28516003 DOI: https://doi.org/10.7717/peerj.3168

Wang Y, Mowla R, Guo L, Ogunniyi AD, Rahman T, Lopes MA, et al. Evaluation of a series of 2-napthamide derivatives as inhibitors of the drug efflux pump AcrB for the reversal of antimicrobial resistance. Bioorg Med Chem Lett. 2017;27(4):733-9. https://doi.org/10.1016/j.bmcl.2017.01.042 PMid:28129976 DOI: https://doi.org/10.1016/j.bmcl.2017.01.042

Wang Y, Alenazy R, Gu X, Polyak SW, Zhang P, Sykes MJ, et al. Design and structural optimization of novel 2H-benzo[h] chromene derivatives that target AcrB and reverse bacterial multidrug resistance. Eur J Med Chem. 2021;213:113049. https://doi.org/10.1016/j.ejmech.2020.113049 PMid:33279291 DOI: https://doi.org/10.1016/j.ejmech.2020.113049

Bohnert JA, Szymaniak-Vits M, Schuster S, Kern WV. Efflux inhibition by selective serotonin reuptake inhibitors in Escherichia coli. J Antimicrob Chemother. 2011;66(9):2057-60. https://doi.org/10.1093/jac/dkr258 PMid:21700628 DOI: https://doi.org/10.1093/jac/dkr258

Grimsey EM, Fais C, Marshall RL, Ricci V, Ciusa ML, Stone JW, et al. Chlorpromazine and amitriptyline are substrates and inhibitors of the AcrB multidrug efflux pump. mBio. 2020;11(3):e00465-20. https://doi.org/10.1128/mBio.00465-20 PMid:32487753 DOI: https://doi.org/10.1128/mBio.00465-20

Hwang D, Lim YH. Resveratrol controls Escherichia coli growth by inhibiting the AcrAB-TolC efflux pump. FEMS Microbiol Lett. 2019;366(4):fnz030. https://doi.org/10.1093/femsle/fnz030 PMid:30753439 DOI: https://doi.org/10.1093/femsle/fnz030

Aparna V, Dineshkumar K, Mohanalakshmi N, Velmurugan D, Hopper W. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PloS One. 2014;9(7):e101840. https://doi.org/10.1371/journal.pone.0101840 PMid:25025665 DOI: https://doi.org/10.1371/journal.pone.0101840

Kincses A, Varga B, Csonka Á, Sancha S, Mulhovo S, Madureira AM, et al. Bioactive compounds from the African medicinal plant Cleistochlamys kirkii as resistance modifiers in bacteria. Phytother Res. 2018;32(6):1039-46. https://doi.org/10.1002/ptr.6042 PMid:29464798 DOI: https://doi.org/10.1002/ptr.6042

Wang Y, Alenzy R, Song D, Liu X, Teng Y, Mowla R, et al. Structural optimization of natural product nordihydroguaretic acid to discover novel analogues as AcrB inhibitors. Eur J Med Chem. 2020;186:111910. https://doi.org/10.1016/j.ejmech.2019.111910 PMid:31801655 DOI: https://doi.org/10.1016/j.ejmech.2019.111910

Lu WJ, Hsu PH, Chang CJ, Su CK, Huang YJ, Lin HJ, et al. Identified seaweed compound diphenylmethane serves as an efflux pump inhibitor in drug-resistant Escherichia coli. Antibiotics. 2021;10(11):1378. https://doi.org/10.3390/antibiotics10111378 DOI: https://doi.org/10.3390/antibiotics10111378

Spengler G, Kincses A, Gajdács M, Amaral L. New roads leading to old destinations: Efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules. 2017;22(3):468. https://doi.org/10.3390/molecules22030468 PMid:28294992 DOI: https://doi.org/10.3390/molecules22030468

Masi M, Dumont E, Vergalli J, Pajovic J, Réfrégiers M, Pages JM. Fluorescence enlightens RND pump activity and the intrabacterial concentration of antibiotics. Res Microbiol. 2018;169(7-8):432-41. https://doi.org/10.1016/j.resmic.2017.11.005 DOI: https://doi.org/10.1016/j.resmic.2017.11.005

Chan HS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci. 2019;40(8):592-604. https://doi.org/10.1016/j.tips.2019.06.004 PMid:31320117 DOI: https://doi.org/10.1016/j.tips.2019.06.004

Rathi E, Kumar A, Kini SG. Computational approaches in efflux pump inhibitors: Current status and prospects. Drug Discov Today. 2020;25(10):1883-90. https://doi.org/10.1016/j.drudis.2020.07.011 PMid:32712312 DOI: https://doi.org/10.1016/j.drudis.2020.07.011

Bohnert JA, Schuster S, Kern WV, Karcz T, Olejarz A, Kaczor A, et al. Novel piperazine arylideneimidazolones inhibit the AcrAB-TolC pump in Escherichia coli and simultaneously act as fluorescent membrane probes in a combined realtime influx and efflux assay. Antimicrobial Agents Chemother. 2016;60(4):1974-83. https://doi.org/10.1128/AAC.01995-15 PMid:26824939 DOI: https://doi.org/10.1128/AAC.01995-15

Wang Y, Mowla R, Ji S, Guo L, Lopes MA, Jin C, et al. Design, synthesis and biological activity evaluation of novel 4-subtituted 2-naphthamide derivatives as AcrB inhibitors. Eur J Med Chem. 2018;143:699-709. https://doi.org/10.1016/j.ejmech.2017.11.102 PMid:29220791 DOI: https://doi.org/10.1016/j.ejmech.2017.11.102

Haynes KM, Abdali N, Jhawar V, Zgurskaya HI, Parks JM, Green AT, et al. Identification and structure-activity relationships of novel compounds that potentiate the activities of antibiotics in Escherichia coli. J Med Chem. 2017;60(14):6205-19. https://doi.org/10.1021/acs.jmedchem.7b00453 PMid:28650638 DOI: https://doi.org/10.1021/acs.jmedchem.7b00453

Ohene-Agyei T, Mowla R, Rahman T, Venter H. Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. Microbiologyopen. 2014;3(6):885-96. https://doi.org/10.1002/mbo3.212 PMid:25224951 DOI: https://doi.org/10.1002/mbo3.212

Yilmaz S, Altinkanat-Gelmez G, Bolelli K, Guneser-Merdan D, Over-Hasdemir MU, Aki-Yalcin E, et al. Binding site feature description of 2-substituted benzothiazoles as potential AcrAB-TolC efflux pump inhibitors in E. coli. SAR QSAR Environ Res. 2015;26(10):853-71. https://doi.org/10.1080/1062936X.2015.1106581 PMid:26559566 DOI: https://doi.org/10.1080/1062936X.2015.1106581

Opperman TJ, Nguyen ST. Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol. 2015;6:421. https://doi.org/10.3389/fmicb.2015.00421 PMid:25999939 DOI: https://doi.org/10.3389/fmicb.2015.00421

Mowla R, Wang Y, Ma S, Venter H. Kinetic analysis of the inhibition of the drug efflux protein AcrB using surface plasmon resonance. Biochim Biophys Acta Biomembr. 2018;1860(4):878-86. https://doi.org/10.1016/j.bbamem.2017.08.024 PMid:28890187 DOI: https://doi.org/10.1016/j.bbamem.2017.08.024

Le MT, Hoang VN, Nguyen DN, Bui TH, Phan TV, Huynh PN, et al. Structure-based discovery of ABCG2 inhibitors: A homology protein-based pharmacophore modeling and molecular docking approach. Molecules. 2021;26(11):3115. https://doi.org/10.3390/molecules26113115 PMid:34071039 DOI: https://doi.org/10.3390/molecules26113115

Tran TS, Le MT, Tran TD, Tran TH, Thai KM. Design of curcumin and flavonoid derivatives with acetylcholinesterase and betasecretase inhibitory activities using in silico approaches. Molecules. 2020;25(16):3644. https://doi.org/10.3390/molecules25163644 PMid:32785161 DOI: https://doi.org/10.3390/molecules25163644

Jamshidi S, Sutton JM, Rahman KM. Mapping the dynamic functions and structural features of acrb efflux pump transporter using accelerated molecular dynamics simulations. Sci Rep. 2018;8(1):10470. https://doi.org/10.1038/s41598-018-28531-6 PMid:29992991 DOI: https://doi.org/10.1038/s41598-018-28531-6

Macı́as FA, Torres A, Galindo JL, Varela RM, Álvarez JA, Molinillo JM. Bioactive terpenoids from sunflower leaves cv. peredovick. Phytochemistry. 2002;61(6):687-92. https://doi.org/10.1016/S0031-9422(02)00370-9 PMid:12423890 DOI: https://doi.org/10.1016/S0031-9422(02)00370-9

Na Z, Xiang W, Niu XM, Mei SX, Lin ZW, Li CM, et al. Diterpenoids from Isodon enanderianus. Phytochemistry. 2002;60(1):55-60. https://doi.org/10.1016/S0031-9422(02)00073-0 PMid:11985852 DOI: https://doi.org/10.1016/S0031-9422(02)00073-0

Downloads

Published

2022-11-25

How to Cite

1.
Phan T-V, Nguyen C-H-H, Nguyen V-T-V. 3D-Pharmacophore and Molecular Docking Studies for AcrAB-TolC Efflux Pump Potential Inhibitors from DrugBank and Traditional Chinese Medical Database. Open Access Maced J Med Sci [Internet]. 2022 Nov. 25 [cited 2024 Apr. 25];10(A):1659-67. Available from: https://oamjms.eu/index.php/mjms/article/view/11081

Similar Articles

You may also start an advanced similarity search for this article.