Hypolipidemic Activity of Solid Dispersion of Leucomisin
DOI:
https://doi.org/10.3889/oamjms.2024.11935Keywords:
Artemisia leucodes Schrenk., sesquiterpene lactone, leucomisin, glycyrrhizic acid disodium salt, solid dispersion, hypolipidemic activityAbstract
BACKGROUND: The sesquiterpene lactone leucomisin is a promising compound with hypolipidemic activity, but it is practically insoluble in water, which reduces its bioavailability. Therefore, we synthesized a solid dispersion of leucomisin with the glycyrrhizic acid disodium salt, samples of which were studied for hypolipidemic activity.
AIM: To study the hypolipidemic activity of solid dispersion of leucomisin with glycyrrhizic acid disodium salt.
METHODS: We synthesized the solid dispersion of leucomisin by "simple mixing" method. The study of hypolipidemic activity of the samples was carried out according to known methods on models of acute tween hyperlipidemia, acute ethanol hyperlipidemia, fatty liver dystrophy of rats.
RESULTS: Based on the results of the experiments conducted, it was determined that the solid dispersion of leucomisin: Reduces triacylglycerols and cholesterol levels in rat serum in acute experimental hyperlipidemia induced by Tween-80, free fatty acids, serum triacylglycerols and triacylglycerol levels in rat liver in an ethanol-induced acute hyperlipidemia model; Lowers the level of triacylglycerols and increases the ratio of phospholipids to triacylglycerols in experimental fatty liver degeneration induced by tetrachloromethane in rats; Activates the antiperoxidation enzymes glutathione reductase and glutathione peroxidase and increases the redox potential of the glutathione system; and Reduces the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in rat liver and increases cholesterol excretion through the gastrointestinal tract.
CONCLUSION: The synthesized solid dispersion of leucomisin showed pronounced hypolipidemic activity.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Xiao W, Li Y, Zhuang Z, Song Z, Wang W, Huang N, et al. Effects of genetically proxied lipid-lowering drugs on acute myocardial infarction: a drug-target mendelian randomization study. Lipids Health Dis. 2024;23:1-163. https://doi.org/10.1186/s12944-024-02133-w PMid:38831433 PMCid:PMC11145822 DOI: https://doi.org/10.1186/s12944-024-02133-w
Ali SM, Salem FE, Aboulwafa MM, Shawky RM. Hypolipidemic activity of lactic acid bacteria: Adjunct therapy for potential probiotics. PLoS One. 2022;17(6):17. https://doi.org/10.1371/journal.pone.0269953 PMid:35737711 PMCid:PMC9223303 DOI: https://doi.org/10.1371/journal.pone.0269953
Friedman YE, Steinberg DM, Canetti M, Cohen I, Segev S, Salomon O. An impact of lipid profile and lipid lowering drugs on ≥ 70 year olds of an upper socioeconomic class: a retrospective cohort study. Lipids Health Dis. 2021;20(1):120. https://doi.org/10.1186/s12944-021-01529-2 PMid:34587967 PMCid:PMC8480056 DOI: https://doi.org/10.1186/s12944-021-01529-2
Nakamura M, Ako J, Arai H, Hirayama A, Nohara A, Murakami Y, et al. Lipid Management and 2-Year Clinical Outcomes in Japanese Patients with Acute Coronary Syndrome: EXPLORE-J. J Atheroscler Thromb. 2021;28(12):1307-1322. https://doi.org/10.5551/jat.59543 PMid:33612707 PMCid:PMC8629700 DOI: https://doi.org/10.5551/jat.59543
Georgiopoulos G, Delialis D, Aivalioti E, Georgakis V, Mavraganis G, Angelidakis L, et al. Implementation of risk enhancers in ASCVD risk estimation and hypolipidemic treatment eligibility: A sex-specific analysis. Hellenic J Cardiol. 2023;73:16-23. https://doi.org/10.1016/j.hjc.2023.02.006 PMid:36805072 DOI: https://doi.org/10.1016/j.hjc.2023.02.006
Liu Y, Liu C, Kou X, Wang Y, Yu Y, Zhen N, et al. Synergistic Hypolypidemic Effects and Mechanisms of Phytochemicals: A Review. Foods. 2022;11(18):2774. https://doi.org/10.3390/foods11182774 PMid:36140902 PMCid:PMC9497508 DOI: https://doi.org/10.3390/foods11182774
Silva LR, Jacinto TA, Coutinho P. Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods. 2022;11(3):336. https://doi.org/10.3390/foods11030336 PMid:35159487 PMCid:PMC8915173 DOI: https://doi.org/10.3390/foods11030336
Tang MT, Jiang H, Wan C, Wang XL, Zhou S, Zhou T. Hypolypidemic Activity and Mechanism of Action of Sargassum fusiforme Polysaccharides. Chem Biodivers. 2023;20(8):e202300264. https://doi.org/10.1002/cbdv.202300264 PMid:37370194 DOI: https://doi.org/10.1002/cbdv.202300264
Adekenov SM, Shaimerdenova ZhR, Ermekkyzy A. Anatomical study and histochemical analysis of Artemisia leucodes Schrenk. Fitoterapia. 2020;146:6. https://doi.org/10.1016/j.fitote.2020.104721 PMid:32919024 DOI: https://doi.org/10.1016/j.fitote.2020.104721
Adekenov SM, Shaimerdenova ZhR, Nurkadirov DK, Adekenova AS, Berthod A. Purification and Chromatographic Analyses of Cyclopentadienone Guaianolides from Artemisia leucodes Schrenk. Chromatographia. 2024. https://doi.org/10.1007/s10337-023-04285-w DOI: https://doi.org/10.1007/s10337-023-04285-w
Vivar AR, Olmos F. Chemical Study of Achillea millefolium. Rev Soc Quim Mex. 1968;12(5):212-213.
Adekenov SM, Zhumabekova AA, Amanzhan A. Biologically active terpenoids Artemisia leucodes Schrenk and technology of a new medicinal substance. In book: "Chemistry and technology of plant substances" - Syktyvkar. 2024:6.
Silaeva SYu, Slivkin AI, Belenova AS, Chupandina EE, Krasnyuk II (Jr), Naryshkin SR, et al. Use of solid dispersion systems in pharmacy. Condensed matter and interphases. 2020;22(2):173-181.
Khabriev RU. Guidelines for experimental (preclinical) study of new pharmacological substances / Federal Service for Surveillance in Healthcare and Social Development, Federal State Institution "Scientific Center for Expertise of Medicinal Products". R.U. Khabriev. Moscow: OJSC "Publishing House "Medicine". 2005:832.
Folch J, Lees M, Stanley GH. A simple method for isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497-509. https://doi.org/10.1016/S0021-9258(18)64849-5 PMid:13428781 DOI: https://doi.org/10.1016/S0021-9258(18)64849-5
Vladimirov VA, Archakov AI. Lipid peroxidation in biological membranes. M.: Science. 1972:320.
Casteels M, Croes K, Van-Veldhoven PP, Mannaerts GP. Peroxisomal localization of alpha-oxidation in human liver. J Inherit Metab Dis. 1997;20(5):665-673. https://doi.org/10.1023/A:1005370325260 PMid:9323561 DOI: https://doi.org/10.1023/A:1005370325260
Anderson ME. Determination of glutathione and glutathione sulfide in biological samples. Methods Enzymol. 1985;113:548-555. https://doi.org/10.1016/S0076-6879(85)13073-9 PMid:4088074 DOI: https://doi.org/10.1016/S0076-6879(85)13073-9
Little C, O'Brien PJ. An intracellular GSH-peroxidase with a lipid peroxide substrate. Biochem Biophys Res Commun. 1968;31:145-150. https://doi.org/10.1016/0006-291X(68)90721-3 PMid:5656060 DOI: https://doi.org/10.1016/0006-291X(68)90721-3
Smith KJ, Kapoor R, Felts PA. Demyelination: the role of reactive oxygen and nitrogen species. Brain pathology. 1999;9(1):69-92. https://doi.org/10.1111/j.1750-3639.1999.tb00212.x PMid:9989453 PMCid:PMC7161906 DOI: https://doi.org/10.1111/j.1750-3639.1999.tb00212.x
Yagi Y, Matsuda M, Yagi K. Formation of lipoperoxide in isolated sciatic nerve by chinoform -ferric chelate. Experientia. 1976;32(7):905-906. https://doi.org/10.1007/BF02003759 PMid:133813 DOI: https://doi.org/10.1007/BF02003759
Hermes-Lima M, Willmore WG, Storey KB. Quantification of lipid peroxidation in tissue extracts based on Fe(III)xylenol orange complex formation. Free Radic Biol Med. 1995;19:271-280. https://doi.org/10.1016/0891-5849(95)00020-X PMid:7557541 DOI: https://doi.org/10.1016/0891-5849(95)00020-X
Mahakunakorn P, Tohda M, Murakami Y, Matsumoto K, Watanabe H. Antioxidant and free radical-scavenging activity of Chotosan and its related constituents. Biol Pharm Bull. 2004;27(1):38-46. https://doi.org/10.1248/bpb.27.38 PMid:14709896 DOI: https://doi.org/10.1248/bpb.27.38
Mak KM, Kee D, Shin DW. Alcohol-associated capillarization of sinusoids: A critique since the discovery by Schaffner and Popper in 1963. Anat Rec (Hoboken). 2022;305(7):1592-1610. https://doi.org/10.1002/ar.24829 PMid:34766732 DOI: https://doi.org/10.1002/ar.24829
Li WJ, Xu HW. The differences between patients with nonalcoholic fatty liver disease (NAFLD) and those without NAFLD, as well as predictors of functional coronary artery ischemia in patients with NAFLD. Clin Cardiol. 2024;47(2):7. https://doi.org/10.1002/clc.24205 PMid:38108229 PMCid:PMC10823446 DOI: https://doi.org/10.1002/clc.24205
Selevich MI, Lelevich VV, Razvadovsky YuE. The influence of Solyanka Kholmovoy on the lipid composition of the blood plasma of rats during chronic alcohol intoxication and after ethanol withdrawal. Bull Let's experiment. Biology and medicine. 1999;6:665-667. https://doi.org/10.1007/BF02433291 DOI: https://doi.org/10.1007/BF02433291
Komissarova IA, Rotenberg YS, Masteropulo AP. Mechanisms of action of ethanol and approaches to the correction of metabolic disorders in chronic alcoholism. Review information "Medicine and Healthcare". M.: VNIIMI. 1986;6:74.
Nordmann R. Alcohol and antioxidant systems. Alcohol. 1994;29:513-522.
Loguercio C, Clot P, Albano E, et al. Free radicals and not acetaldehyde influence the circulating levels of GSH after acute or chronic alcohol abuse: in vivo and in vitro studies. Ital J Gastroenterol Hepatol. 1997;29:168-173.
Lucas D, Berthou F, Dreano Y, Menez J. Ethanol-inducible cytochrome P-450: assessment of substrates as specific chemical probes in rat liver microsomes. Alcohol Clin Exp Res. 1990;14(4):381. https://doi.org/10.1111/j.1530-0277.1990.tb01207.x PMid:2221288 DOI: https://doi.org/10.1111/j.1530-0277.1990.tb01207.x
Downloads
Published
How to Cite
License
Copyright (c) 2024 Sergazy Adekenov, Dmitry Leontyevich Savchenko, Leyla Ibatullaevna Arystan (Author)
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0