Tamarillo Consumption Associated with Increased Acetylcholinesterase Activity and Improved Oxidative Stress Markers in Farmers Exposed to Daily Pesticide-related Activities in Baturiti, Bali, Indonesia
DOI:
https://doi.org/10.3889/oamjms.2020.3265Keywords:
Tamarillo juice, AChE, SOD, MDA, PesticidesAbstract
BACKGROUND: The behavior of pesticide use that does not meet the standards will increase the risk of pesticide intoxication among farmers. The main content of pesticides, namely, organophosphates and carbamate, has been widely known to be the main culprit of the negative side effect through inhibition of the acetylcholinesterase (AChE) enzyme. However, this effect theoretically could be reduced by exogenous antioxidants properties provided in tamarillo fruit.
AIM: This study aims to determine the effect of tamarillo consumption on the AChE activity and biomarkers of oxidative stress among farmers who exposed daily pesticide-related activity.
METHODS: A randomized, open-label clinical trial was conducted among 40 farmers in the Baturiti, Tabanan Regency, Bali, Indonesia, during March–August 2018. The respondents were randomly divided into two groups: (1) Groups of farmers without tamarillo juice supplementation (control), and groups of farmers who were given pure tamarillotamarillo juice 250 ml/day every day for 2 weeks (intervention). Measurement of AChE, malondialdehyde (MDA), and superoxide dismutase (SOD) levels was carried out at the beginning and the end of the study. Data were analyzed using SPSS version 17 for windows.
RESULTS: Bioactive compound assessment found several antioxidant properties such as flavonoid, tocopherol, polyphenol, β-carotene, ascorbic acid, citric acid, and anthocyanin. The study participants were dominated by male and the distribution of gender between control and intervention groups was comparable (p > 0.05). There were also no significant differences in age, height, weight, body mass index, land area, duration of being farmers, spraying frequency, and smoking history (p > 0.05). However, bivariate analysis between control and intervention groups found a statistically significant difference in SOD (MD: 23.31 ± 15.89 nmol/l; 95% CI: 14.13–32.49; p < 0.0001), MDA (MD: 81.82 ± 62.45 nmol/l; 95% CI: 45.76–117.88; p < 0.0001), and AChE (MD: 341.61 ± 206.44 nmol/min/ml; p < 0.0001) levels.
CONCLUSION: Tamarillo consumption associated with increased AChE activity and improved oxidative stress through increased SOD and decreased MDA levels among farmers.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Purnawati S. Pendekatan ergonomi total untuk mengantisipasi risiko keracunan pestisida pada petani-petani bali. Bumi Lestari J Environ. 2008;8(2):154-61.
Damalas CA, Eleftherohorinos IG. Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health. 2011;8(5):1402-19. https://doi.org/10.3390/ ijerph8051402 PMid:21655127
Sutarga IM. Pencegahan efek pestisida pada petani di desa buahan kintamani. Bul Udayana Mengabdi. 2012;6(1):1-6.
Muliarta IM. Pelatihan Pestisida di Kabupaten Tabanan. Denpasar: Yayasan Ilmu faal Denpasar; 2007.
Asghar U, Malik M, Javed A. Pesticide Exposure and Human Health: A Review. J Ecosyst Ecography. 2016;S5:5.
Eddleston M, Buckley NA, Eyer P, Dawson AH. Management of acute organophosphorus pesticide poisoning. Lancet. 2008;371(9612):597-607. https://doi.org/10.1016/ s0140-6736(07)61202-1 PMid:17706760
Peeples ES. Albumin, a new biomarker of organophosphorus toxicant exposure, identified by mass spectrometry. Toxicol Sci. 2005;83(2):303-12. https://doi.org/10.1093/toxsci/kfi023 PMid:15525694
Mehta A, Verma RS, Srivastava N. Chlorpyrifos induced alterations in the levels of hydrogen peroxide, nitrate and nitrite in rat brain and liver. Pestic Biochem Physiol. 2009;94(2-3):55- 9. https://doi.org/10.1016/j.pestbp.2009.04.001
Vidyasagar J, Karunakar N, Reddy MS, Rajnarayana K, Surender T, Krishna DR. Oxidative stress and antioxidant status in acute oxidative stress and antioxidant status in acute organophosphorous insecticide poisoning. Indian J Pharmacol. 2004;36(2):76-9.
Mishra B, Badade Z, Rastogi S, Singh S. Antioxidant status and oxidative stress in organophosphate pesticide poisoning. IOSR J Dent Med Sci. 2013;7(6):20-4.
Lieberman M, Peet A. Marks’ Basic Medical Biochemistry : A Clinical Approach. 5th ed. Philadelphia, PA: Wolters Kluwer, Lippincott Williams & Wilkins; 2017.
Halliwell B, Gutteridge JM. Free Radicals in Biology and Medicine. London: Oxford University Press; 2015.
Saxens R, Lal AM, Semadi N. Effect of aging on antioxidant enzyme status and lipid peroxidation. J Indian Acad Geriatr. 2015;2(2):53-6.
Eberhardt MK. Reactive Oxygen Metabolites: Chemistry and Medical Consequences. Boca Raton: CRC Press; 2001. p. 591.
Banjarnahor SD, Artanti N. Antioxidant properties of flavonoids. Med J Indones. 2015;23(4):239. https://doi.org/10.13181/mji. v23i4.1015
Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981-90. https://doi.org/10.1016/j. cellsig.2012.01.008 PMid:22286106
Lister CE, Morrison SC, Kerkhofs NS, Wright, MK. The Nutritional Composition and Health Benefits of New Zealand Tamarillos. Wellington: Crop and Food Research; 2011.
Alavanja MC, Hoppin JA, Kamel F. Health effects of chronic pesticide exposure: Cancer and neurotoxicity. Annu Rev Public Health. 2004;25(1):155-97. https://doi.org/10.1146/annurev. publhealth.25.101802.123020 PMid:15015917
Surajudeen YA, Sheu RK, Ayokulehin KM, Olatunbosun AG. Oxidative stress indices in Nigerian pesticide applicators and farmers occupationally exposed to organophosphate pesticides. Int J Appl Basic Med Res. 2014;4(1):S37-40. https://doi. org/10.4103/2229-516x.140730 PMid:25298941
Calvert GM, Karnik J, Mehler L, Beckman J, Morrissey B, SievertJ, et al. Acute pesticide poisoning among agricultural workers in the United States, 1998-2005. Am J Ind Med. 2008;51(12):883-98. https://doi.org/10.1002/ajim.20623 PMid:18666136
Yang CC, Deng JF. Intermediate syndrome following organophosphate insecticide poisoning. J Chin Med Assoc. 2007;70(11):467-72. PMid:18063499
Lerro CC, Koutros S, Andreotti G, Friesen MC, Alavanja MC, Blair A, et al. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural health study. Occup Environ Med. 2015;72(10):736- 44. https://doi.org/10.1136/oemed-2014-102798 PMid:26150671
Prabawa IP, Bharghah A, Liwang F, Tandio DA, Tandio AL, Lestari AA, et al. Pretreatment neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as a predictive value of hematological markers in cervical cancer. Asian Pac J Cancer Prev. 2019;20(3):863-8. https://doi.org/10.31557/ apjcp.2019.20.3.863 PMid:30912405
Mulyani WR, Sanjiwani MI, Sandra, Prabawa IPY, Lestari AAW, Wihandani DM, et al. Chaperone-based therapeutic target innovation: Heat shock protein 70 (HSP70) for Type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2020;13:559-68. https:// doi.org/10.2147/dmso.s232133 PMid:32161482
Bjørling-Poulsen M, Andersen HR, Grandjean P. Potential developmental neurotoxicity of pesticides used in Europe. Environ Health. 2008;7:50. https://doi.org/10.1186/1476-069x-7-50 PMid:18945337
Kadir NA, Rahmat A, Jaafar HZ. Protective effects of tamarillo (Cyphomandra betacea) extract against high fat diet induced obesity in sprague-dawley rats. J Obes. 2015;2015:846041. https://doi.org/10.1155/2015/846041
Aly N, Kawther M, El-Sebae F, Khalek A. Protective Effect of Vitamin C Against Chlorpyrifos Oxidative Stress in Male Mice. Amsterdam: Elsevier; 2010. https://doi.org/10.1016/j. pestbp.2009.11.007
Ambardini RL. Efek Pemberian Panax Ginseng Terhadap Kadar Malondialdehyde (MDA) dan Superoxide Dismutase (SOD) Darah Pada Latihan Fisik Aerobik Intensitas Sedang. Yogyakarta: Gajah Mada University; 2005. https://doi. org/10.33757/jik.v2i2.92
von Osten JR, Tinoco-Ojanguren R, Soares AM, Guilhermino L, Guilhermino L. Effect of pesticide exposure on acetylcholinesterase activity in subsistence farmers from Campeche, Mexico. Arch Environ Health. 2004;59(8):418-25. https://doi.org/10.3200/aeoh.59.8.418-425 PMid:16268118
Kapeleka JA, Sauli E, Sadik O, Ndakidemi PA. Biomonitoring of acetylcholinesterase (AChE) activity among smallholder horticultural farmers occupationally exposed to mixtures of pesticides in Tanzania. J Environ Public Health. 2019;2019:1- 11. https://doi.org/10.1155/2019/3084501
Dasgupta S, Meisner C, Wheeler D, Xuyen K, Lam NT. Pesticide poisoning of farm workers-implications of blood test results from Vietnam. Int J Hyg Environ Health. 2007;210(2):121-32. https:// doi.org/10.1596/1813-9450-3624 PMid:17008128
Neupane D, Jørs E, Brandt L. Pesticide use, erythrocyte acetylcholinesterase level and self-reported acute intoxication symptoms among vegetable farmers in Nepal: A crosssectional study. Environ Health. 2014;13(1):98. https://doi. org/10.1186/1476-069x-13-98 PMid:25409889
Guytingco A, Thepaksorn P, Neitzel RL. Prevalence of abnormal serum cholinesterase and associated symptoms from pesticide exposure among agricultural workers in the South of Thailand. J Agromedicine. 2018;23(3):270-8. https://doi.org/10.1080/1059 924x.2018.1470049 PMid:30047860
Rathish D, Senavirathna I, Jayasumana C, Agampodi S. Red blood cell acetylcholinesterase activity among healthy dwellers of an agrarian region in Sri Lanka: A descriptive cross-sectional study. Environ Health Prev Med. 2018;23(1):25. https://doi. org/10.1186/s12199-018-0717-0 PMid:29929492
Singh S, Kumar V, Thakur S, Banerjee BD, Chandna S, Rautela RS, et al. DNA damage and cholinesterase activity in occupational workers exposed to pesticides. Environ Toxicol Pharmacol. 2011;31(2):278-85. https://doi.org/10.1016/j. etap.2010.11.005 PMid:21787695
Koureas M, Tsakalof A, Tzatzarakis M, Vakonaki E, Tsatsakis A, Hadjichristodoulou C. Biomonitoring of organophosphate exposure of pesticide sprayers and comparison of exposure levels with other population groups in Thessaly (Greece). Occup Environ Med. 2014;71(2):126-33. https://doi.org/10.1136/ oemed-2013-101490 PMid:24186943
Safi JM, Mourad TA, Yassin MM. Hematological biomarkers in farm workers exposed to organophosphorus pesticides in the Gaza Strip. Arch Environ Occup Health. 2005;60(5):235-41. https://doi.org/10.3200/aeoh.60.5.235-241 PMid:17290843
Simoniello MF, Kleinsorge EC, Scagnetti JA, Mastandrea C, Grigolato RA, Paonessa AM, et al. Biomarkers of cellular reaction to pesticide exposure in a rural population. Biomarkers. 2010;15(1):52-60. https://doi.org/10.3109/13547500903276378 PMid:19811113
Lionetto MG, Caricato R, Calisi A, Giordano ME, Schettino T. Acetylcholinesterase as a biomarker in environmental and occupational medicine: New insights and future perspectives. Biomed Res Int. 2013;2013:321213. https://doi. org/10.1155/2013/321213 PMid:23936791
Wiryadana KA, Supadmanaba IG, Samatra ID. Progress and potential roles blood biomarkers of ischemic stroke in clinical setting. Indones J Biomed Sci. 2017;11(2):19-29. https://doi. org/10.15562/ijbs.v11i2.138
Mashali A, Howaida A, Gihan M, Manal H. Role of Oxidative Stress and Apoptosis in Acute Organophosphorus Intoxicated Patients. J Med Res Inst. 2005;26(3):255-63.
Mutalib MA, Rahmat A, Ali F, Othman F, Ramasamy R. Nutritional compositions and antiproliferative activities of different solvent fractions from ethanol extract of Cyphomandra betacea (Tamarillo) Fruit. Malays J Med Sci. 2017;24(5):19-32. PMid:29386969
Noeman SA, Hamooda HE, Baalash AA. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr. 2011;3(1):17. https://doi.org/10.1186/1758-5996-3-17 PMid:21812977
Prior RL. Fruits and vegetables in the prevention of cellular oxidative damage. Am J Clin Nutr. 2003;78(3):570S-8S. PMid:12936951
Mazza G, Kay CD, Cottrell T, Holub BJ. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem. 2002;50(26):7731-7. https://doi.org/10.1021/jf020690l PMid:12475297
Chun OK, Chung SJ, Claycombe KJ, Song WO. Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in U.S. Adults. J Nutr. 2008;138(4):753- 60. https://doi.org/10.1093/jn/138.4.753 PMid:18356331
Wannamethee SG, Lowe GD, Rumley A, Bruckdorfer KR, Whincup PH. Associations of Vitamin C status, fruit and vegetable intakes, and markers of inflammation and hemostasis. Am J Clin Nutr. 2006;83(3):567-74. https://doi.org/10.1093/ajcn.83.3.567 PMid:16522902
Esmaillzadeh A, Kimiagar M, Mehrabi Y, Azadbakht L, Hu FB, Willett WC. Fruit and vegetable intakes, C-reactive protein, and the metabolic syndrome. Am J Clin Nutr. 2006;84(6):1489-97. https://doi.org/10.1093/ajcn/84.6.1489 PMid:17158434
Voutilainen S, Nurmi T, Mursu J, Rissanen TH. Carotenoids and cardiovascular health. Am J Clin Nutr. 2006;83(6):1265-71. PMid:16762935
Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, et al. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am J Med. 2002;113(9):71S-88S. https://doi. org/10.1016/s0002-9343(01)00995-0 PMid:12566142
Muliarta IM, Adiputra LM, Dinata IM, Adiputra IN. Oral tamarillo juice preventable to decline lung function among parking workers. Int J Sci Res. 2017;6(2):1535-7.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2020 Made Muliarta, Ketut Tirtayasa, Putu Yuda Prabawa, Kadek Adit Wiryadana (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0