Diagnostic Reliability of the American College of Radiology Thyroid Imaging Reporting and Data System in Royal Commission Hospital, Kingdom of Saudi Arabia

Authors

  • Hussain Alyousif Department of Internal Medicine, Royal Commission Hospital, AL Jubail Industrial City, Al Jubail, Kingdom of Saudi Arabia https://orcid.org/0000-0003-1106-2517
  • Mona A. Sid Ahmed Department of Internal Medicine, Royal Commission Hospital, AL Jubail Industrial City, Al Jubail, Kingdom of Saudi Arabia
  • Ayat Al Saeed Department of Internal Medicine, Royal Commission Hospital, AL Jubail Industrial City, Al Jubail, Kingdom of Saudi Arabia
  • Abdulmohsin Hussein Department of Internal Medicine, Royal Commission Hospital, AL Jubail Industrial City, Al Jubail, Kingdom of Saudi Arabia https://orcid.org/0000-0002-0533-4486
  • Imad Eddin Musa Department of Internal Medicine, Royal Commission Hospital, AL Jubail Industrial City, Al Jubail, Kingdom of Saudi Arabia

DOI:

https://doi.org/10.3889/oamjms.2022.8264

Keywords:

American college of radiology thyroid imaging reporting and data system, Fine needle aspiration cytology, Thyroid nodule, Ultrasound, Accuracy tests

Abstract

BACKGROUND: The American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) classified and predicted the risk of thyroid nodule malignancy with ultrasound scan scoring system.

AIM: Hence, we aimed to investigate the value of the combined use of ultrasound ACR TI-RADS scoring and ultrasound-guided thyroid fine needle aspiration cytology (FNAC) based on the Bethesda System for Reporting Thyroid Cytology (TBSRTC) for assessing the accuracy tests of diagnosing low and high-risk thyroid nodules of ACR TI-RADS.

METHODS: We enrolled 392 patients with thyroid nodules who underwent ultrasound scanning and scoring using the ACR TI-RADS classification along with ultrasound-guided thyroid FNAC and scoring with TBSRTC. The two methods were grouped as low and high risk of malignancy to evaluate the accuracy of ACR TI-RADS.

RESULTS: Three hundred and ninety-two patients were enrolled in the study. The mean (Standard deviation [SD]) age was 46.03 (13.96) years, 332 (84.7%) were females and the mean (SD) of body mass index was 31.90 (22.32) kg/m2 and Vitamin D 17.65 (11.15) nmol/L. The mean (SD) for thyroid function test was 5.37 (44.16) mmol/L for thyroid-stimulating hormone, 1.48 (1.49) ng/dL for free thyroxine (FT4), and 2.69 (0.70) nmol/L for free triiodothyronine (FT3). Most of the participants were euthyroid (63.8%), but 28.6% had hypothyroidism and 7.7% had hyperthyroidism. The accuracy tests of ACR TI-RADS in relation to TBSRTC, were sensitivity (87.8%), specificity (65.2%), positive predictive value (29.8%), and negative predictive value (97%). The area under the curve = 0.590, 95% CI = 0.530–0.650, p ˂ 0.006.

CONCLUSION: ACR TI-RADS is a simple, practical, and reliable scoring system for assessing thyroid nodule; it has a better overall diagnostic performance and the ability to exclude unnecessary FNAC with high negative predictive value.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Kitahara CM, Sosa JA. The changing incidence of thyroid cancer. Nat Rev Endocrinol. Nat Rev Endocrinol. 2016;12(11):646-53. https://doi.org/10.1038/nrendo.2016.110 PMid:27418023 DOI: https://doi.org/10.1038/nrendo.2016.110

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. https://doi.org/10.3322/caac.21492 PMid:30207593 DOI: https://doi.org/10.3322/caac.21492

Alawadhi E, Al-Madouj A, Al-Zahrani A. Trends in thyroid cancer incidence in the gulf cooperation council states: A 15-year analysis. Gulf J Oncolog. 2020;1(34):31-8. PMid:33431360

Hussain F, Iqbal S, Mehmood A, Bazarbashi S, ElHassan T, Chaudhri N. Incidence of thyroid cancer in the Kingdom of Saudi Arabia, 2000-2010. Hematol Oncol Stem Cell Ther. 2013;6(2):58-64. https://doi.org/10.1016/j.hemonc.2013.05.004 PMid:23756719 DOI: https://doi.org/10.1016/j.hemonc.2013.05.004

Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, et al. Revised American thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19(11):1167-214. https://doi.org/10.1089/thy.2009.0110 PMid:19860577 DOI: https://doi.org/10.1089/thy.2009.0110

Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L. European thyroid association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: The EU-TIRADS. Eur Thyroid J. 2017;6(5):225-37. https://doi.org/10.1159/000478927 PMid:2916776 DOI: https://doi.org/10.1159/000478927

Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, Hegedüs L, et al. American association of clinical endocrinologists, American college of endocrinology, and associazione medici endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules--2016 update. Endocr Pract. 2016;22(5):622-39. https://doi.org/10.4158/EP161208.GL PMid:27167915 DOI: https://doi.org/10.4158/EP161208.GL

Shen Y, Liu M, He J, Wu S, Chen M, Wan Y, et al. Comparison of different risk-stratification systems for the diagnosis of benign and malignant thyroid nodules. Front Oncol. 2019;9:378. https://doi.org/10.3389/fonc.2019.00378 PMid:31139568 DOI: https://doi.org/10.3389/fonc.2019.00378

Na DG, Baek JH, Sung JY, Kim JH, Kim JK, Choi YJ, et al. Thyroid imaging reporting and data system risk stratification of thyroid nodules: Categorization based on solidity and echogenicity. Thyroid. 2016;26(4):562-72. https://doi.org/10.1089/thy.2015.0460 PMid:26756476 DOI: https://doi.org/10.1089/thy.2015.0460

Chua JM, Tang JYM, Lim DSW, Venkatanarasimha N, Chandramohan S, Too CW, et al. Should we perform fine needle aspiration cytology of subcentimetre thyroid nodules? A retrospective review of local practice. Ultrasound. 2019;27(1):64-8. https://doi.org/10.1177/1742271X18820556 PMid:30774700 DOI: https://doi.org/10.1177/1742271X18820556

Bahaj AS, Alkaff HH, Melebari BN, Melebari AN, Sayed SI, Mujtaba SS, et al. Role of fine-needle aspiration cytology in evaluating thyroid nodules A retrospective study from a tertiary care center of Western Region, Saudi Arabia. Saudi Med J. 2020;41(10):1098-103. https://doi.org/10.15537/smj.2020.10.25417 PMid:33026051 DOI: https://doi.org/10.15537/smj.2020.10.25417

Pandya A, Caoili EM, Jawad-Makki F, Wasnik AP, Shankar PR, Bude R, et al. Retrospective cohort study of 1947 thyroid nodules: A comparison of the 2017 American college of radiology TI-RADS and the 2015 American thyroid association classifications. AJR Am J Roentgenol. 2020;214(4):900-6. https://doi.org/10.2214/AJR.19.21904 PMid:32069084 DOI: https://doi.org/10.2214/AJR.19.21904

Merhav G, Zolotov S, Mahagneh A, Malchin L, Mekel M, Beck- Razi N. Validation of tirads ACR risk assessment of thyroid nodules in comparison to the ATA guidelines. J Clin Imaging Sci. 2021;11(1):37. https://doi.org/10.25259/JCIS_99_2021 PMid:34345527 DOI: https://doi.org/10.25259/JCIS_99_2021

Horvath E, Majlis S, Rossi R, Franco C, Niedmann JP, Castro A, et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab. 2009;94(5):1748-51. https://doi.org/10.1210/jc.2008-1724 PMid:19276237 DOI: https://doi.org/10.1210/jc.2008-1724

de Macedo BM, Izquierdo RF, Golbert L, Meyer EL. Reliability of thyroid imaging reporting and data system (TI-RADS), and ultrasonographic classification of the American thyroid association (ATA) in differentiating benign from malignant thyroid nodules. Arch Endocrinol Metab. 2018;62(2):131-8. https://doi.org/10.20945/2359-3997000000018 PMid:29641731 DOI: https://doi.org/10.20945/2359-3997000000018

Singaporewalla RM, Hwee J, Lang TU, Desai V. Clinico-pathological correlation of thyroid nodule ultrasound and cytology using the TIRADS and bethesda classifications. World J Surg. 2017;41(7):1807-11. https://doi.org/10.1007/s00268-017-3919-5 PMid:28251273 DOI: https://doi.org/10.1007/s00268-017-3919-5

Tan H, Li Z, Li N, Qian J, Fan F, Zhong H, et al. Thyroid imaging reporting and data system combined with Bethesda classification in qualitative thyroid nodule diagnosis. Medicine (Baltimore). 2019;98(50):e18320. https://doi.org/10.1097/MD.0000000000018320 PMid:31852120 DOI: https://doi.org/10.1097/MD.0000000000018320

Xue E, Zheng M, Zhang S, Huang L, Qian Q, Huang Y. Ultrasonography-based classification and reporting system for the malignant risk of thyroid nodules. J Nippon Med Sch. 2017;84(3):118-24. https://doi.org/10.1272/jnms.84.118 PMid:28724845 DOI: https://doi.org/10.1272/jnms.84.118

Lai S, Chen Y, Chen Z, Wang L, Cong S, Kuang J. Accuracy of two thyroid imaging, reporting and data systems for differential diagnosis of benign and malignant thyroid nodules. Nan Fang Yi Ke Da Xue Xue Bao. 2020;40(3):400-6. https://doi.org/10.12122/j.issn.1673-4254.2020.03.19 PMid:32376572

Xu T, Wu Y, Wu RX, Zhang YZ, Gu JY, Ye XH, et al. Validation and comparison of three newly-released thyroid imaging reporting and data systems for cancer risk determination. Endocrine. 2019;64(2):299-307. https://doi.org/10.1007/s12020-018-1817-8 PMid:30474824 DOI: https://doi.org/10.1007/s12020-018-1817-8

Ha EJ, Moon WJ, Na DG, Lee YH, Choi N, Kim SJ, et al. A multicenter prospective validation study for the Korean thyroid imaging reporting and data system in patients with thyroid nodules. Korean J Radiol. 2016;17(5):811-21. https://doi.org/10.3348/kjr.2016.17.5.811 PMid:27587972 DOI: https://doi.org/10.3348/kjr.2016.17.5.811

Tan L, Tn YS, Tan S. Diagnostic accuracy and ability to reduce unnecessary FNAC: A comparison between four thyroid imaging reporting data system (TI-RADS) versions. Clin Imaging. 2020;65:133-7. https://doi.org/10.1016/j.clinimag.2020.04.029 PMid:32470834 DOI: https://doi.org/10.1016/j.clinimag.2020.04.029

Jabar AS, Koteshwara P, Andrade J. Diagnostic reliability of the thyroid imaging reporting and data system (TI-RADS) in routine practice. Pol J Radiol. 2019;84:e274-80. https://doi.org/10.5114/pjr.2019.86823 PMid:31482001 DOI: https://doi.org/10.5114/pjr.2019.86823

Bazarbashi S, Al Eid H, Minguet J. Cancer incidence in Saudi Arabia: 2012 data from the Saudi cancer registry. Asian Pac J Cancer Prev. 2017;18(9):2437-44. https://doi.org/10.22034/APJCP.2017.18.9.2437 PMid:28952273

Musa IR, El Khatim Ahmad M, Al Raddady FS, Al Rabih WR, Elsayed EM, Mohamed GB, et al. Predictors of a follicular nodule (Thy3) outcome of thyroid fine needle aspiration cytology among Saudi patients. BMC Res Notes. 2017;10(1):612. https://doi.org/10.1186/s13104-017-2943-8 PMid:29169383 DOI: https://doi.org/10.1186/s13104-017-2943-8

Saeed MI, Hassan AA, Butt ME, Baniyaseen KA, Siddiqui MI, Bogari NM, et al. Pattern of thyroid lesions in Western Region of Saudi Arabia: A retrospective analysis and literature review. J Clin Med Res. 2018;10(2):106-16. PMid:29317955 DOI: https://doi.org/10.14740/jocmr3202w

Tessler FN, Middleton WD, Grant EG, Hoang JK, Berland LL, Teefey SA, et al. ACR thyroid imaging, reporting and data system (TI-RADS): White paper of the ACR TI-RADS committee. J Am Coll Radiol. 2017;14(5):587-95. https://doi.org/10.1016/j.jacr.2017.01.046 PMid:28372962 DOI: https://doi.org/10.1016/j.jacr.2017.01.046

Cibas ES, Ali SZ. The 2017 bethesda system for reporting thyroid cytopathology. Thyroid. 2017;27(11):1341-6. https://doi.org/10.1089/thy.2017.0500 PMid:29091573 DOI: https://doi.org/10.1089/thy.2017.0500

Seminati D, Capitoli G, Leni D, Fior D, Vacirca F, Di Bella C, et al. Use of diagnostic criteria from ACR and EU-TIRADS systems to improve the performance of cytology in thyroid nodule triage. Cancers (Basel). 2021;13(21):5439. https://doi.org/10.3390/cancers13215439 PMid:34771602 DOI: https://doi.org/10.3390/cancers13215439

Ewid M, Naguib M, Alamer A, El Saka H, Alduraibi S, AlGoblan A, et al. Updated ACR thyroid imaging reporting and data systems in risk stratification of thyroid nodules: 1-year experience at a tertiary care hospital in Al-Qassim. Egypt J Intern Med. 2020;31(4):868-73. https://doi.org/10.4103/ejim.ejim_143_19

Kim DH, Chung SR, Choi SH, Kim KW. Accuracy of thyroid imaging reporting and data system category 4 or 5 for diagnosing malignancy: A systematic review and meta-analysis. Eur Radiol. 2020;30(10):5611-24. https://doi.org/10.1007/s00330-020-06875-w PMid:32356157 DOI: https://doi.org/10.1007/s00330-020-06875-w

Migda B, Migda M, Migda MS, Slapa RZ. Use of the kwak thyroid image reporting and data system (K-TIRADS) in differential diagnosis of thyroid nodules: Systematic review and meta-analysis. Eur Radiol. 2018;28(6):2380-8. https://doi.org/10.1007/s00330-017-5230-0 PMid:29294156 DOI: https://doi.org/10.1007/s00330-017-5230-0

Leni D, Seminati D, Fior D, Vacirca F, Capitoli G, Cazzaniga L, et al. Diagnostic Performances of the ACR-TIRADS system in thyroid nodules triage: A prospective single center study. Cancers (Basel). 2021;13(9):2230. https://doi.org/10.3390/cancers13092230 PMid:34066485 DOI: https://doi.org/10.3390/cancers13092230

Stoian D, Timar B, Derban M, Pantea S, Varcus F, Craina M, et al. Thyroid Imaging Reporting and Data System (TI-RADS): The impact of quantitative strain elastography for better stratification of cancer risks. Med Ultrason. 2015;17(3):327-32. https://doi.org/10.11152/mu.2013.2066.173.dst PMid:26343081 DOI: https://doi.org/10.11152/mu.2013.2066.173.dst

Gacayan RJ, Kasala R, Puno-Ramos MP, Mojica DJ, Castro MK. Comparison of the diagnostic performance of ultrasound-based thyroid imaging reporting and data system (TIRADS) classification with American thyroid association (ATA) guidelines in the prediction of thyroid malignancy in a single tertiary Center in Manila, Philippines. J ASEAN Fed Endocr Soc. 2021;36(1):69-75. https://doi.org/10.15605/jafes.036.01.14 PMid:34177091 DOI: https://doi.org/10.15605/jafes.036.01.14

Basha MA, Alnaggar AA, Refaat R, El-Maghraby AM, Refaat MM, Abd Elhamed ME, et al. The validity and reproducibility of the thyroid imaging reporting and data system (TI-RADS) in categorization of thyroid nodules: Multicentre prospective study. Eur J Radiol. 2019;117:184-92. https://doi.org/10.1016/j.ejrad.2019.06.015 PMid:31307646 DOI: https://doi.org/10.1016/j.ejrad.2019.06.015

Yun G, Kim YK, Choi SI, Kim JH. Medullary thyroid carcinoma: Application of thyroid imaging reporting and data system (TI-RADS) classification. Endocrine. 2018;61(2):285-92. https://doi.org/10.1007/s12020-018-1594-4 PMid:29680915 DOI: https://doi.org/10.1007/s12020-018-1594-4

Cortés JMR, Zerón HM. Genetics of thyroid disorders. Folia Med (Plovdiv). 2019;61(2):172-9. https://doi.org/10.2478/folmed-2018-0078 PMid:31301652 DOI: https://doi.org/10.2478/folmed-2018-0078

Rebaï M, Rebaï A. Molecular genetics of thyroid cancer. Genet Res (Camb). 2016;98:e7. https://doi.org/10.1017/S0016672316000057 PMid:27174043 DOI: https://doi.org/10.1017/S0016672316000057

Le AR, Thompson GW, Hoyt BJ. Thyroid fine-needle aspiration biopsy: An evaluation of its utility in a community setting. J Otolaryngol Head Neck Surg. 2015;44(1):12. https://doi.org/10.1186/s40463-015-0063-9 PMid:25890284 DOI: https://doi.org/10.1186/s40463-015-0063-9

Downloads

Published

2022-01-31

How to Cite

1.
Alyousif H, Sid Ahmed MA, Al Saeed A, Hussein A, Musa IE. Diagnostic Reliability of the American College of Radiology Thyroid Imaging Reporting and Data System in Royal Commission Hospital, Kingdom of Saudi Arabia. Open Access Maced J Med Sci [Internet]. 2022 Jan. 31 [cited 2024 Apr. 19];10(B):173-9. Available from: https://oamjms.eu/index.php/mjms/article/view/8264