Molecular Docking Analysis from Bryophyllum pinnatum Compound as A COVID-19 Cytokine Storm Therapy

Authors

  • Perdana Aditya Rahman Department of Internal Medicine, Division of Rheumatology and Immunology, University of Brawijaya, Saiful Anwar Hospital, Malang, Indonesia
  • Mokhamad Fahmi Rizki Syaban Faculty of Medicine, Universitas Brawijaya, Saiful Anwar Hospital, Malang, Indonesia https://orcid.org/0000-0003-4287-2379
  • Salsabila Ghina Anoraga Faculty of Medicine, Universitas Brawijaya, Saiful Anwar Hospital, Malang, Indonesia
  • Faradilah Lukmana Sabila Faculty of Medicine, Universitas Brawijaya, Saiful Anwar Hospital, Malang, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.8412

Keywords:

Bryophyllum pinnatum, COVID-19, Cytokine storm, In silico

Abstract

BACKGROUND: Cytokine storm is a condition that typically develops during severe COVID-19 viral infection and contributes cause of death. Bryophyllum pinnatum is a herbal medicinal that has an impact as an anti-inflammatory agent. B. pinnatum may be used as a therapeutic agent for cytokine storms.

AIM: We were investigating the molecular interactions of B. pinnatum active compounds with cytokines involved in COVID-19 infection.

METHODS: We did the molecular docking approach using the active chemicals from Bryphyllum pinnatum, which was available on the PubChem website. Meanwhile, the protein utilized is retrieved from the protein databank. Pyrx 9.5, Pymol, and Discovery Studio software were used to evaluate and visualize the interaction results between ligands and the proteins formed.

RESULTS: Bryophyllin B has the strongest affinity to IL-6, whereas Bryotoxin A had the highest binding to Gly-ACE and TNF alpha. Pharmacokinetic predictions indicate that Bryophyllin B has a good pharmacokinetic profile but a low toxicity profile due to a reproductive effect. On the other hand, Bryotoxin A has a poor pharmacokinetic profile but is safe for human use.

CONCLUSIONS: Bryophyllin B and Bryotoxin A show potential as a therapy for the cytokine storm of COVID-19 infection. However, further study is required to examine the effectiveness and toxicity of these compounds.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

WHO Coronavirus (COVID-19) Dashboard. Available form: https://www.covid19.who.int/.2022 [Last accessed on 2022 Feb 23].

CDC. Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention; 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/index.html [Last accessed on 2021 Oct 06].

Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we know so far. Front Immunol. 2020;11:1446. https://doi.org/10.3389/fimmu.2020.01446 PMid:32612617 DOI: https://doi.org/10.3389/fimmu.2020.01446

Cron RQ, Behrens EM, editors. Cytokine Storm Syndrome. Cham: Springer International Publishing; 2019. https://doi.org/10.1007/978-3-030-22094-5 DOI: https://doi.org/10.1007/978-3-030-22094-5

Chen L, Chen H, Dong S, Huang W, Chen L, Wei Y, et al. The effects of chloroquine and hydroxychloroquine on ACE2-related coronavirus pathology and the cardiovascular system: An evidence-based review. Function. 2020;1(2):zqaa012. DOI: https://doi.org/10.1093/function/zqaa012

Mangalmurti N, Hunter CA. Cytokine storms: Understanding COVID-19. Immunity. 2020;53(1):19-25. https://doi.org/10.1016/j.immuni.2020.06.017 PMid:32610079 DOI: https://doi.org/10.1016/j.immuni.2020.06.017

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5 PMid:31986264 DOI: https://doi.org/10.1016/S0140-6736(20)30183-5

Scherger S, Henao-MartMart A, Franco-Paredes C, Shapiro L. Rethinking interleukin-6 blockade for treatment of COVID-19. Med Hypotheses. 2020;144:110053. DOI: https://doi.org/10.1016/j.mehy.2020.110053

Arnaldez FI, O’Day SJ, Drake CG, Fox BA, Fu B, Urba WJ, et al. The society for immunotherapy of cancer perspective on regulation of interleukin-6 signaling in COVID-19-related systemic inflammatory response. J Immunother Cancer. 2020;8(1):e000930. https://doi.org/10.1136/jitc-2020-000930 PMid:32385146 DOI: https://doi.org/10.1136/jitc-2020-000930

Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708-20. DOI: https://doi.org/10.1056/NEJMoa2002032

Lechien JR, Chiesahiesa Ch CM, Place S, Van Laethem Y, Cabaraux P, Mat Q, et al. Clinical and Epidemiological Characteristics of 1420 European Patients with mildCharacteristics of 1emic inflammatory response. J Immunot;288(3):335-44. https://doi.org/10.1111/joim.13089 PMid:32352202 DOI: https://doi.org/10.1111/joim.13089

Nurdiana N, Dantara TW, Syaban MF, Mustafa SA, Ikhsani H, Syafitri FE, et al. Efficacy and side effects studies of Bryophyllum pinnatum leaves ethanol extract in pristane-induced SLE BALB/c mice model. AIP Conf Proc. 2019;2108(1):020016. https://doi.org/10.1063/1.5109991 DOI: https://doi.org/10.1063/1.5109991

Nurdiana N, Dantara TW, Syaban MF, Mustafa SA, Ikhsani H, Syafitri FE, et al. Effect of Bryophyllum pinnatum leaves ethanol extract in TNF-ethanol extractcandidate therapy of SLE in pristane-induced SLE BALB/c mice model. Res J Pharm Technol. 2021;14(2):1069-72. DOI: https://doi.org/10.5958/0974-360X.2021.00192.X

Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202-13. https://doi.org/10.1093/nar/gkv951 PMid:26400175 DOI: https://doi.org/10.1093/nar/gkv951

Nugraha RY, Faratisha IF, Mardhiyyah K, Ariel DG, Putri FF, Zamrudah N, et al. Antimalarial properties of isoquinoline derivative from Streptomyces hygroscopicus subsp. Hygroscopicus: An in silico approach. BioMed Res Int. 2020;2020:1-15. DOI: https://doi.org/10.1155/2020/6135696

Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: A review. Biophys Rev. 2017;9(2):91-102. https://doi.org/10.1007/s12551-016-0247-1 PMid:28510083 DOI: https://doi.org/10.1007/s12551-016-0247-1

Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. https://doi.org/10.1038/srep42717 PMid:28256516 DOI: https://doi.org/10.1038/srep42717

Sander T, Freyss J, von Korff M, Reich JR, Rufener C. OSIRIS, an entirely in-house developed drug discovery informatics system. J Chem Inf Model. 2009;49(2):232-46. https://doi.org/10.1021/ci800305f PMid:19434825 DOI: https://doi.org/10.1021/ci800305f

Nugraha A, Rahmadhani D, Puspitaningrum M, Rizqianti Y, Kharisma V, Ernawati D. Molecular docking of anthocyanins and ternatin in Clitoria ternatea as coronavirus disease oral manifestation therapy. J Adv Pharm Technol Res. 2021;12(4):362. https://doi.org/10.4103/japtr.japtr_126_21 PMid:34820310 DOI: https://doi.org/10.4103/japtr.japtr_126_21

Yueniwati Y, Syaban MF, Faratisha IF, Yunita KC, Putra GF, Kurniawan DB, et al. Molecular docking approach of natural compound from herbal medicine in java against severe acute respiratory syndrome coronavirus-2 receptor. Open Access Maced J Med Sci. 2021;9:1181-6. DOI: https://doi.org/10.3889/oamjms.2021.6963

Yueniwati Y, Syaban MF, Erwan NE, Putra GF, Krisnayana AD. Molecular docking analysis of Ficus religiosa active compound with anti-inflammatory activity by targeting tumour necrosis factor alpha and vascular endothelial growth factor receptor in diabetic wound healing. Open Access Maced J Med Sci. 2021;9:1031-6. DOI: https://doi.org/10.3889/oamjms.2021.7068

Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev. 2016;101:89-98. https://doi.org/10.1016/j.addr.2016.05.007 PMid:27182629 DOI: https://doi.org/10.1016/j.addr.2016.05.007

Syaban MF, Rachman HA, Arrahman AD, Hudayana N, Purna J, Pratama FA. Allium sativum as antimalaria agent via falciapin protease-2 inhibitor mechanism: Molecular docking perspective. CRJIM. 2021;2(1):6. DOI: https://doi.org/10.21776/ub.crjim.2021.002.01.4

Dhananjayan K, Sumathy A, Palanisamy S. Molecular docking studies and in-vitro acetylcholinesterase inhibition by terpenoids and flavonoids. Asian J Res Chem 2013;7:1011-7.

Syaban MF, Erwan NE, Syamsuddin MR, Zahra FA, Sabila FL. Molecular docking approach of viscosin as antibacterial for methicillin-resistant Staphylococcus aureus via β-lactamase inhibitor mechanism. Clin Res J Intern Med. 2021;2(2):187-92. DOI: https://doi.org/10.21776/ub.crjim.2021.002.02.4

Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: The current evidence and treatment strategies. Front Immunol. 2020;11:1708. https://doi.org/10.3389/fimmu.2020.01708 PMid:32754163 DOI: https://doi.org/10.3389/fimmu.2020.01708

Kim JS, Lee JY, Yang JW, Lee KH, Effenberger M, Szpirt W, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics. 2021;11(1):316-29. https://doi.org/10.7150/thno.49713 PMid:33391477 DOI: https://doi.org/10.7150/thno.49713

Lv S, Han M, Yi R, Kwon S, Dai C, Wang R. Anti-TNF-F-m in COVID-19. Theranosticsepsis: A systematic meta-analysis. Int J Clin Pract. 2014;68(4):520-8. https://doi.org/10.1111/ijcp.12382 PMid:24548627 DOI: https://doi.org/10.1111/ijcp.12382

Ye Q, Wang B, Mao J. The pathogenesis and treatment of the “Cytokine Storm” in COVID-19. J Infect. 2020;80(6):607-13. https://doi.org/10.1016/j.jinf.2020.03.037 PMid:32283152 DOI: https://doi.org/10.1016/j.jinf.2020.03.037

Andrade AW, Guerra GC, de Souza Arae S DF, de Araújo Júnior RF, de Araújo AA, de Carvalho TG, et al. Anti-inflammatory and chemopreventive effects of Bryophyllum pinnatum (Lamarck) leaf extract in experimental colitis models in rodents. Front Pharmacol. 2020;11:998. https://doi.org/10.3389/fphar.2020.00998 PMid:32848723 DOI: https://doi.org/10.3389/fphar.2020.00998

Downloads

Published

2022-03-21

How to Cite

1.
Rahman PA, Syaban MFR, Anoraga SG, Sabila FL. Molecular Docking Analysis from Bryophyllum pinnatum Compound as A COVID-19 Cytokine Storm Therapy. Open Access Maced J Med Sci [Internet]. 2022 Mar. 21 [cited 2024 Apr. 26];10(B):779-84. Available from: https://oamjms.eu/index.php/mjms/article/view/8412

Issue

Section

Infective Diseases

Categories

Most read articles by the same author(s)