Effects of Red-Fleshed Pitaya (Selenicereus polyrhizus) Ingestion after Strenuous Exercise on Creatine Kinase and Mitochondrial Function in Rat Muscle Cells

Authors

  • Gusbakti Rusip Department of Physiology, Faculty of Medicine, Universitas Prima Indonesia, Medan, Indonesia image/svg+xml https://orcid.org/0000-0002-9094-7155
  • Syafrudin Ilyas Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
  • I Nyoman Lister Department of Physiology, Faculty of Medicine, Universitas Prima Indonesia, Medan, Indonesia
  • Chrismis Novalinda Ginting Department of Public Health, Universitas Prima Indonesia, Medan, Indonesia
  • Ade Indra Mukti Department of Surgery, Faculty of Medicine, Universitas Prima Indonesia, Medan, Indonesia https://orcid.org/0000-0002-9094-7155
  • Ermi Girsang Department of Public Health, Universitas Prima Indonesia, Medan, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.9001

Keywords:

Red-fleshed pitaya extract, Strenuous exercise, MDA, CK, Improved cell function

Abstract

BACKGROUND: Free radicals formed during strenuous exercise through an increase in reactive oxygen species induce damage to tissues (e.g., muscle and liver) and cause oxidative damage to cells, resulting in mitochondrial dysfunction.

AIM: As an effective method to repair mitochondrial muscle cell function, this study investigated the effects of red-fleshed pitaya (RFP) ingestion on creatine kinase (CK), which is a biomarker for muscle tissue damage, and malondialdehyde (MDA) levels during strenuous exercise.

METHODS: This study involved 25 3-month-old male rats with an average weight of 200 g. The RFP extract was obtained through ethanol extraction and concentrated using an air-drying method. Rats were randomly allocated into five groups as follows: Two control groups (K1 [no-exercise, no RFP] and K2 [exercise, no RFP]) and three test groups (P1, P2, and P3; subjected to exercise and treated with 75, 150, and 300 mg kg−1 body weight of RFP, respectively). The exercise was in the form of swimming for 20 min 3 times/week for 31 days. CK and MDA were measured through an enzyme-linked immunosorbent assay, and histopathological examinations were performed through hematoxylin and eosin staining of rat muscles.

RESULTS: The MDA levels after the ingestion of RFP extracts were compared between the K2 group and the P1, P2, and P3 groups. The results showed significant differences (p < 0.05 for P1 and P2, and p < 0.01 for P3), indicating the production of free radicals and CK, with features of damaged muscle cells based on histopathology. Ingestion of the RFP extract led to improvements in soleus muscle cells, resulting in cell function repair.

CONCLUSION: Levels of MDA and CK increased during exercise, which caused significant muscle damage. However, after treatment with the RFP extract, the levels of both markers decreased. Thus, strenuous exercise causes an increase in reactive oxygen species, resulting in increased free radical levels. RFP ingestion decreased oxidative stress levels, thus repairing mitochondrial cell function.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Santalla A, Naranjo J, Terrados N. Muscle efficiency improves over time in world-class cyclists. Med Sci Sports Exerc. 2009;41(5):1096-101. https://doi.org/10.1249/MSS.0b013e318191c802 PMid:19346977 DOI: https://doi.org/10.1249/MSS.0b013e318191c802

Cooper CE, Vollaard NB, Choueiri T, Wilson MT. Exercise, free radicals and oxidative stress. Introduction: Free radicals and oxidative stress. Biochem Soc Trans. 2002;30(7):280-5. PMid:12023865 DOI: https://doi.org/10.1042/bst0300280

Simioni C, Zauli G, Martelli AM, Vitale M, Gonelli A, Neri LM, et al. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget. 2018;9(24):17181-98. https://doi.org/10.18632/oncotarget.24729 PMid:29682215 DOI: https://doi.org/10.18632/oncotarget.24729

Margonis K, Fatouros LG, Jamurtas AZ, Nikolaidis MG, Douroudos L, Chatzinikolaou A, et al. Oxidative stress biomarkers responses to physical overtraining: Implications for diagnosis. Free Radic Biol Med. 2007;43(6):901-10. https://doi.org/10.1016/j.freeradbiomed.2007.05.022 PMid:17697935 DOI: https://doi.org/10.1016/j.freeradbiomed.2007.05.022

Banfi G, Colombini A, Lombardi G, Lubkowska A. Metabolic markers in sports medicine. Adv Clin Chem. 2012;56:1-54. https://doi.org/10.1016/B978-0-12-394317-0.00015-7 PMid:22397027 DOI: https://doi.org/10.1016/B978-0-12-394317-0.00015-7

Mougios V. Reference intervals for serum creatine kinase in athletes. Br J Sports Med. 2007;41(10):674-8. https://doi.org/10.1136/bjsm.2006.034041 PMid:17526622 DOI: https://doi.org/10.1136/bjsm.2006.034041

Brancaccio P, Maffulli N, Limongelli FM. Creatine kinase monitoring in sport medicine. Br Med Bull. 2007;81-2:209-30. https://doi.org/10.1093/bmb/ldm014 PMid:17569697 DOI: https://doi.org/10.1093/bmb/ldm014

Coelho DB, Morandi RF, De Melo MA, Silami-Garcia E. Creatine kinase kinetics in professional soccer players during a competitive season. Rev Bras Cineantropom Desempenho Hum. 2011;13(3):189-94. https://doi.org/10.5007/1980-0037.2011v13n3p189 DOI: https://doi.org/10.5007/1980-0037.2011v13n3p189

Gomez-Cabrera M, Domenech E, Viña J, Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44(2):126-31. https://doi.org/10.1016/j.freeradbiomed.2007.02.001 PMid:18191748 DOI: https://doi.org/10.1016/j.freeradbiomed.2007.02.001

Berzosa C, Cebrián I, Fuentes-Broto L, Gómez-Trullén E, Piedrafita E, Martínez-Ballarín E, et al. Acute exercise increases plasma total antioxidant status and antioxidant enzyme activities in untrained men. J Biomed Biotechnol. 2011;2011:540458. https://doi.org/10.1155/2011/540458 PMid:21436993 DOI: https://doi.org/10.1155/2011/540458

Rimbach G, Höhler D, Fischer A, Roy S, Virgili F, Pallauf J, et al. Methods to assess free radicals and oxidative stress in biological system. Arch Anim Nutr. 1999;52(3):203-22. https://doi.org/10.1080/17450399909386163 PMid:10553486 DOI: https://doi.org/10.1080/17450399909386163

Abe K, Inage K, Sakuma Y, Orita S, Yamauchi K, Suzuki M, et al. Evaluation of histological changes in back muscle injuries in rats over time. Asian Spine J. 2017;11(1):88-92. https://doi.org/10.4184/asj.2017.11.1.88 PMid:28243375 DOI: https://doi.org/10.4184/asj.2017.11.1.88

Rizo-Roca D, Ríos-Kristjánsson JG, Núñez-Espinosa C, Ascensão A, Magalhães J, Torrella JR, et al. A semiquantitative scoring tool to evaluate eccentric exercise-induced muscle damage in trained rats. Eur J Histochem. 2015;59(4):2544. https://doi.org/10.4081/ejh.2015.2544 PMid:26708179 DOI: https://doi.org/10.4081/ejh.2015.2544

Davis JM, Murphy A, Carmichael MD, Zielinski MR, Groschwitz CM, Brown AS, et al. Curcumin effects on inflammation and performance recovery following eccentric exercise-induced muscle damage. Am J Physiol Regul Integr Comp Physiol. 2007;292(6):2168-73. https://doi.org/10.1152/ajpregu.00858.2006 PMid:17332159 DOI: https://doi.org/10.1152/ajpregu.00858.2006

Lin CH, Lin YA, Chen SL, Hsu MC, Hsu CC. American ginseng attenuates eccentric exercise-induced muscle damage via the modulation of lipid peroxidation and inflammatory adaptation in males. Nutrients. 2021;14(1):78. https://doi.org/10.3390/nu14010078 PMid:35010953 DOI: https://doi.org/10.3390/nu14010078

Fischer CP, Hiscock NJ, Penkowa M, Basu S, Vessby B, Kallner A, et al. Supplementation with Vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle. J Physiol. 2004;558(2):633-45. https://doi.org/10.1113/jphysiol.2004.066779 PMid:15169848 DOI: https://doi.org/10.1113/jphysiol.2004.066779

Vassilakopoulos T, Karatza M, Katsaounou P, Kollintza A, Zakynthinos S, Roussos C. Antioxidants attenuate the plasma cytokine response to exercise in humans. J Appl Physiol. 2003;94(3):1025-32. https://doi.org/10.1152/japplphysiol.00735.2002 PMid:12571133 DOI: https://doi.org/10.1152/japplphysiol.00735.2002

Mastaloudis A, Morrow JD, Hopkin DW, Devaral S, Traber MG. Antioxidant supplementation prevents exercises-induced lipid peroxidation, but not inflammation, in ultramarathon runners. Free Radic Biol Med. 2004;36(10):1329-41. https://doi.org/10.1016/j.freeradbiomed.2004.02.069 PMid:15110397 DOI: https://doi.org/10.1016/j.freeradbiomed.2004.02.069

Peake JM, Suzuki K, Coombes JS, The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem. 2007;18(6):357-71. https://doi.org/10.1016/j.jnutbio.2006.10.005 PMid:17156994 DOI: https://doi.org/10.1016/j.jnutbio.2006.10.005

Avery NG, Kaiser JL, Sharman MJ, Scheett TP, Barnes DM, Gómez AL, et al. Effects of Vitamin E supplementation on recovery from repeated bouts of resistance exercise. J Strength Cond Res. 2003;17(4):801-9. https://doi.org/10.1519/1533-4287(2003)017<0801:EOVESO>2.0.CO;2 PMid:14636105 DOI: https://doi.org/10.1519/00124278-200311000-00028

Paradies G, Petrosillo G, Paradies V, Ruggiero FM. Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging. Free Radic Biol Med. 2010;48(10):1286-95. https://doi.org/10.1016/j.freeradbiomed.2010.02.020 PMid:20176101 DOI: https://doi.org/10.1016/j.freeradbiomed.2010.02.020

Sachdev S, Davies KJ. Production, detection, and adaptive responses to free radicals in exercise. Free Radic Biol Med. 2008;44(2):215-23. https://doi.org/10.1016/j.freeradbiomed.2007.07.019 PMid:18191757 DOI: https://doi.org/10.1016/j.freeradbiomed.2007.07.019

Fernández-Lázaro D, Fernandez-Lazaro CI, Mielgo-Ayuso J, Navascués LJ, Martínez AC, Seco-Calvo J, et al. The Role of selenium mineral trace element in exercise: Antioxidant defense system, muscle performance, hormone response, and athletic performance. A systematic review. Nutrients. 2020;12(6):1790. https://doi.org/10.3390/nu12061790 PMid:32560188 DOI: https://doi.org/10.3390/nu12061790

Thirupathi A, Wang M, Lin JK, Fekete G, Biro I, Baker JS, et al. Effect of different exercise modalities on oxidative stress: A systematic review. Biomed Res Int. 2021;2021:1-10. https://doi.org/10.1155/2021/1947928 PMid:33628774 DOI: https://doi.org/10.1155/2021/1947928

Marzatico F, Pansarasa O, Bertorelli L, Somenzini L, Valle GD. Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. J Sports Med Phys Fitness. 1997;37(4):235-9. PMid:9509820

Harahap NS, Amelia R. Red dragon fruit (Hylocereus polyrhizus) extract decreases lactic acid level and creatine kinase activity in rats receiving heavy physical exercise. Open Access Maced J Med Sci. 2019;7(14):2232-5. https://doi.10.3889/oamjms.2019.626 PMid:31592070 DOI: https://doi.org/10.3889/oamjms.2019.626

Downloads

Published

2022-04-16

How to Cite

1.
Rusip G, Ilyas S, Lister IN, Ginting CN, Mukti AI, Girsang E. Effects of Red-Fleshed Pitaya (Selenicereus polyrhizus) Ingestion after Strenuous Exercise on Creatine Kinase and Mitochondrial Function in Rat Muscle Cells. Open Access Maced J Med Sci [Internet]. 2022 Apr. 16 [cited 2024 Mar. 28];10(A):680-4. Available from: https://oamjms.eu/index.php/mjms/article/view/9001

Most read articles by the same author(s)

<< < 1 2