Effect of Analgesic Opioid Drugs on Opioid Receptor Genes Expression in HL-1 Mouse Cardiac Myocytes

Authors

  • Waleed Al Abdulmonem Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia

DOI:

https://doi.org/10.3889/oamjms.2023.9154

Keywords:

HL-1 cel, μ (MOR), δ (DOR), κ (KOR), Morphine, Fentanyl, D-penicillamine(2,5)

Abstract

BACKGROUND: The opioid system was mainly involved three types of opioid receptors (ORs): μ (MOR), δ (DOR) and κ (KOR). These ORs are activated by its agonist, a family of endogenous peptides: Endorphins, enkephalins, and dynorphins, respectively.

AIM: This study determined the OR mRNA on effects of agonists exogenous morphine, fentanyl, D-penicillamine (2,5) enkephalin, and ketazocine in HL-1 mouse cardiac myocytes.

MATERIALS AND METHODS: HL-1 mouse cardiac myocytes were treated with 10 μM morphine sulfate, 1 μM fentanyl,1 μM D-penicillamine (2,5) enkephalin, and 1 μM ketazocine. Total mRNAs were extracted and cDNA was synthesized and quantitative real-time polymerase chain reaction was used to analyze gene expression.

RESULTS: The data analysis of MOR, DOR and KOR mRNA expression on effect of morphine was shown less level than control (0.61-fold, 0.67-fold, and 0.65-fold), respectively. The morphine-induced ORs down-regulation, whereas enkephalin treatment demonstrated highly significantly increased in mRNA of DOR (6.3-fold, p = 0.002). As well as, KOR mRNA expression was found highly significant increased under effect of Ketazocine (7.16-fold, p = 0.004).

CONCLUSION: This study found DOR and KOR, but not MOR expressed in HL-1 mouse cardiac myocytes under activation of exogenous opioid analogists. These findings suggested that exogenous analogist’s opioids mimeses the endogenous analogist’s opioids.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Jutkiewicz EM. Correction to: Delta opioid receptor pharmacology and therapeutic applications. Handb Exp Pharmacol. 2018;247:C1-2. https://doi.org/10.1007/978-3-319-95133-1_1001 PMid:31309359 DOI: https://doi.org/10.1007/978-3-319-95133-1_1001

Mollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P, et al. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett. 1994;341(1):33-8. https://doi.org/10.1016/0014-5793(94)80235-1 PMid:8137918 DOI: https://doi.org/10.1016/0014-5793(94)80235-1

Al-Hasani R, Bruchas MR. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology. 2011;115(6):1363-81. https://doi.org/10.1097/ALN.0b013e318238bba6 PMid:22020140 DOI: https://doi.org/10.1097/ALN.0b013e318238bba6

Wei LN. Epigenetic control of the expression of opioid receptor genes. Epigenetics. 2008;3(3):119-21. https://doi.org/10.4161/ epi.3.3.6296 PMid:18497574 DOI: https://doi.org/10.4161/epi.3.3.6296

Koneru A, Satyanarayana S, Rizwan S. Endogenous opioids: Their physiological role and receptors. Glob J Pharmacol. 2009;3(3):149-53.

Przyklenk K. Reduction of myocardial infarct size with ischemic “conditioning”: Physiologic and technical considerations. Anesth Analg. 2013;117(4):891-01. https://doi.org/10.1213/ANE.0b013e318294fc63 PMid:23960036 DOI: https://doi.org/10.1213/ANE.0b013e318294fc63

Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R.

Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev. 2014;66(4):1142-74. https://doi.org/10.1124/pr.113.008300 PMid:25261534 DOI: https://doi.org/10.1124/pr.113.008300

Wong GT, Ling JL, Irwin MG. Activation of central opioid receptors induces cardioprotection against ischemia-reperfusion injury. Anesth Analg. 2010;111(1):24-8. https://doi.org/10.1213/ANE.0b013e3181b8b77e PMid:19861363 DOI: https://doi.org/10.1213/ANE.0b013e3181b8b77e

Zatta AJ, Kin H, Yoshishige D, Jiang R, Wang N, Reeves JG, et al. Evidence that cardioprotection by postconditioning involves preservation of myocardial opioid content and selective opioid receptor activation. Am J Physiol Heart Circ Physiol. 2008;294(3):H1444-51. https://doi.org/10.1152/ajpheart.01279.2006 PMid:18203844 DOI: https://doi.org/10.1152/ajpheart.01279.2006

Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E, et al. Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: Evidence suggesting cross-species protection. Clin Sci (Lond).2009;117(5):191-200. https://doi.org/10.1042/CS20080523 PMid:19175358 DOI: https://doi.org/10.1042/CS20080523

Gwag HB, Kim EK, Park TK, Lee JM, Yang JH, Song YB, et al. Cardioprotective effects of intracoronary morphine in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: A prospective, randomized trial. J Am Heart Assoc. 2017;6(4):e005426. https://doi.org/10.1161/JAHA.116.005426 PMid:28373244 DOI: https://doi.org/10.1161/JAHA.116.005426

Guo H, Pei J, Wang K, Liu Z, Zhang F, Wang K, et al. κ-Opioid receptor activation promotes mitochondrial fusion and enhances myocardial resistance to ischemia and reperfusion injury via STAT3-OPA1 pathway. Eur J Pharmacol. 2020;874:172987. https://doi.org/10.1016/j.ejphar.2020.172987 PMid:32032598 DOI: https://doi.org/10.1016/j.ejphar.2020.172987

Wong GT, Li R, Jiang LL, Irwin MG. Remifentanil post- conditioning attenuates cardiac ischemia-reperfusion injury via kappa or delta opioid receptor activation. Acta Anaesthesiol Scand. 2010;54(4):510-8. https://doi.org/10.1111/j.1399-6576.2009.02145.x PMid:19878098 DOI: https://doi.org/10.1111/j.1399-6576.2009.02145.x

Salemi S, Aeschlimann A, Reisch N, Jungel A, Gay RE, Heppner FL, et al. Detection of kappa and delta opioid receptors in skin--outside the nervous system. Biochem Biophys Res Commun. 2005;338(2):1012-7. https://doi.org/10.1016/j.bbrc.2005.10.072 PMid:16263089 DOI: https://doi.org/10.1016/j.bbrc.2005.10.072

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402-8. https://doi.org/10.1006/meth.2001.1262 PMid:11846609 DOI: https://doi.org/10.1006/meth.2001.1262

Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y. Current research on opioid receptor function. Curr DrugTargets. 2012;13(2):230-46. https://doi.org/10.2174/138945012799201612 PMid:22204322 DOI: https://doi.org/10.2174/138945012799201612

Caputi FF, Acquas E, Kasture S, Ruiu S, Candeletti S, Romualdi P. The standardized Withania somnifera dunal root extract alters basal and morphine-induced opioid receptor gene expression changes in neuroblastoma cells. BMC Complement Altern Med. 2018;18(1):9. https://doi.org/10.1186/s12906-017-2065-9 PMid:29316911 DOI: https://doi.org/10.1186/s12906-017-2065-9

Peng J, Sarkar S, Chang SL. Opioid receptor expression in human brain and peripheral tissues using absolute quantitative real-time RT-PCR. Drug Alcohol Depend. 2012;124(3):223-8. https://doi.org/10.1016/j.drugalcdep.2012.01.013 PMid:22356890 DOI: https://doi.org/10.1016/j.drugalcdep.2012.01.013

Lu Y, Hu J, Zhang Y, Dong C. Spinal neuronal NOS activation mediates intrathecal fentanyl preconditioning induced remote cardioprotection in rats. Int Immunopharmacol. 2014;19(1):127-31. https://doi.org/10.1016/j.intimp.2014.01.013 PMid:24462544 DOI: https://doi.org/10.1016/j.intimp.2014.01.013

Peart JN, Patel HH, Gross GJ. Delta-opioid receptor activation mimics ischemic preconditioning in the canine heart. J Cardiovasc Pharmacol. 2003;42(1):78-1. https://doi.org/10.1097/00005344-200307000-00012 PMid:12827030 DOI: https://doi.org/10.1097/00005344-200307000-00012

Tanaka K, Kersten JR, Riess ML. Opioid-induced cardioprotection. Curr Pharm Des. 2014;20(36):5696-705. https://doi.org/10.2174/1381612820666140204120311 PMid:24502571 DOI: https://doi.org/10.2174/1381612820666140204120311

Gross ER, Hsu AK, Gross GJ. Opioid-induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat hearts. Circ Res. 2004;94(7):960-6. https://doi.org/10.1161/01.RES.0000122392.33172.09 PMid:14976126 DOI: https://doi.org/10.1161/01.RES.0000122392.33172.09

Karlsson LO, Bergh N, Li L, Bissessar E, Bobrova I, Gross GJ, et al. Dose-dependent cardioprotection of enkephalin analogue eribis peptide 94 and cardiac expression of opioid receptors in a porcine model of ischaemia and reperfusion. Eur J Pharmacol. 2012;674(2-3):378-83. https://doi.org/10.1016/j.ejphar.2011.11.012 PMid:22119384 DOI: https://doi.org/10.1016/j.ejphar.2011.11.012

Downloads

Published

2023-01-01

How to Cite

1.
Al Abdulmonem W. Effect of Analgesic Opioid Drugs on Opioid Receptor Genes Expression in HL-1 Mouse Cardiac Myocytes. Open Access Maced J Med Sci [Internet]. 2023 Jan. 1 [cited 2024 Nov. 21];11(A):31-5. Available from: https://oamjms.eu/index.php/mjms/article/view/9154