Biochemical and Anthropometric Nutritional Assessment in Children Infected with COVID-19: A Cross-sectional Study

Authors

  • Hoda Atef Abdelsattar Ibrahim Pediatric Clinical Nutrition Unit, Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
  • Eatematd Helmy Department of Pediatrics, El-Matria Teaching Hospital, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
  • Aya Amin Department of Cancer Epidemiology and Biostatistics, National Cancer Institute, Cairo University, Cairo, Egypt
  • Dina Mahmoud Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt

DOI:

https://doi.org/10.3889/oamjms.2022.9782

Keywords:

Malnutrition, COVID-19, Children, Hypokalemia, Obesity

Abstract

Background: Severe acute respiratory syndrome has led to a pandemic of coronavirus disease 2019 (COVID-19). Malnutrition either biochemically or anthropometrically is a well-known risk factor for COVID-19 and may be the vice versa

Objectives  : To investigate the prevalence of malnutrition in children infected with COVID-19 through evaluating the nutritional biomarkers such as serum electrolytes, serum albumin and hemoglobin together with the anthropometric assessment. 

Methods: A cross sectional study that was conducted at ElMatria Teaching Hospital for all children admitted with confirmed COVID-19 over a period of 6 months from 1st February 2021 to the end of July, 2021. Nutritional biochemical evaluation included serum electrolytes particularly   the potassium and other nutritional biomarkers such  as serum albumin and hemoglobin. Nutritional anthropometric evaluation depended on BMI (body mass index), the height/length, weight for length and weight for height..The prevalence of malnutrition esp. hypokalemia was the main outcome.

Results: Hypokalemia was present in 21.8% of the study participants . Other nutritional biomarkers were found  as hyponatremia, hypocalcemia , hypophosphatemia, hypomagnesemia were detected in 49.1% , 38.2%,21.8% and 34.5%  of the study subjects respectively. Anthropometric malnutrition was present in most of the enrolled children with COVID-19 in the study (65.5 %  (n= 36) )through which overweight and obese children occupied a greater percentage.

Conclusion: Malnutrition either biochemically or anthropometrically could be linked to   COVID-19 in children. COVID-19 could have negative outcomes on the nutritional status such as electrolytes disturbances. Both malnutrition and COVID-19 are considered synergistic associations  

Keywords: Malnutrition. COVID-19. Children. Hypokalemia. Obesity

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Mallah SI, Ghorab OK, Al-Salmi S, Abdellatif OS, Tharmaratnam T, Iskandar MA, et al. COVID-19: Breaking down a global health crisis. Ann Clin Microbiol Antimicrob. 2021;20(1):35. https://doi.org/10.1186/s12941-021-00438-7 PMid:34006330 DOI: https://doi.org/10.1186/s12941-021-00438-7

Raman S, Harries M, Nathawad R, Kyeremateng R, Seth R, Lonne B, International society for social P, child health CWG. Where do we go from here? A child rights-based response to COVID-19. BMJ Paediatr Open. 2020;4(1):e000714. https://doi.org/10.1136/bmjpo-2020-000714 PMid:32577537 DOI: https://doi.org/10.1136/bmjpo-2020-000714

Ibrahim HA, Mahmoud D. Blood groups as biomarkers for Covid-19 in pediatrics review article. Annal Roman Soc Cell Biol. 2021;25(6):19733-40. Available: from https://www.annalsofrscb.ro/index.php/journal/article/view/9837

Aman F, Masood S. How nutrition can help to fight against COVID- 19 Pandemic. Pak J Med Sci. 2020;36(COVID19-S4):S121-3. https://doi.org/10.12669/pjms.36.COVID19-S4.2776 PMid:32582329 DOI: https://doi.org/10.12669/pjms.36.COVID19-S4.2776

López-Mejía L, Núñez-Barrera I, Bautista-Silva M, Vela- Amieva M, Guillen-Lopez S. Nutrition therapy in children with COVID-19. Acta Pediatr Mex. 2020;41(4):109-20. https://doi.org/10.18233/apm41no4s1pps109-s1202059 DOI: https://doi.org/10.18233/APM41No4S1ppS109-S1202059

Barazzoni R, Bischoff SC, Krznaric Z, Pirlich M, Singer P, et al. Endorsed by the ESPEN council, espen expert statements and practical guidance for nutritional management of individuals with sars-cov-2 infection. Clin Nutr. 2020;39(6):1631-8. https://doi.org/10.1016/j.clnu.2020.03.022 PMid:32305181 DOI: https://doi.org/10.1016/j.clnu.2020.03.022

Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48-79. https://doi.org/10.1016/j.clnu.2018.08.037 PMid:30348463 DOI: https://doi.org/10.1016/j.clnu.2018.08.037

Gomes F, Schuetz P, Bounoure L, Austin P, Ballesteros- Pomar M, Cederholm T, et al. ESPEN guideline on nutritional support for polymorbid internal medicine patients. Clin Nutr. 2018;37(1):336-53. https://doi.org/10.1016/j.clnu.2017.06.025 PMid:28802519 DOI: https://doi.org/10.1016/j.clnu.2017.06.025

Volkert D, Beck AM, Cederholm T, Cruz-Jentoft A, Goisser S, Hooper L, et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin Nutr. 2019;38(1):10-47. https://doi.org/10.1016/j.clnu.2018.05.024 PMid:30005900 DOI: https://doi.org/10.1016/j.clnu.2018.05.024

Ibrahim HA, Abdel-Raouf R, Zeid AS, Elsebaie EH, Abdalaleem S, Amin AA, Aboulghar H. Development of a simple and valid nutrition screening tool for pediatric hospitalized patients with acute illness [version 1; peer review: 2 approved, 1 approved with reservations, 1 not approved]. F1000Research 2021, 10:173 https://doi.org/10.12688/f1000research.51186.1 DOI: https://doi.org/10.12688/f1000research.51186.1

Ibrahim HA, Nasr RA, Salama AA, Amin AA. Childhood malnutrition and hypo mineralized molar defects; a cross sectional study, Egypt [version 2; peer review: 3 approved]. F 1000Research 2022, 10:1307 https://doi.org/10.12688/f1000research.74557.2 DOI: https://doi.org/10.12688/f1000research.74557.2

Rashad AS, Sharaf MF. Economic growth and child malnutrition in Egypt: New evidence from national demographic and health survey. Soc Indic Res. 2018;135(2):1-27. https://doi.org/10.1007/s11205-016-1515-y DOI: https://doi.org/10.1007/s11205-016-1515-y

Zemrani B, Gehri M, Masserey E, Knob C, Pellaton R. A hidden side of the COVID-19 pandemic in children: The double burden of under nutrition and over nutrition. Int J Equity Health. 2021;20(1):44. https://doi.org/10.1186/s12939-021-01390-w PMid:33482829 DOI: https://doi.org/10.1186/s12939-021-01390-w

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395(10223):507-13. https://doi.org/10.1016/S0140-6736(20)30211-7 DOI: https://doi.org/10.1016/S0140-6736(20)30211-7

Short KR, Kedzierska K, Van de Sandt CE. Back to the future: Lessons learned from the 1918 influenza pandemic. Front Cell Infect Microbiol. 2018;8:343. https://doi.org/10.3389/fcimb.2018.00343 PMid:30349811 DOI: https://doi.org/10.3389/fcimb.2018.00343

Available from: https://www.who.int/news-room/fact-sheets/detail/malnutrition [Last accessed on 2021 Jun 09].

Pallath MM, Ahirwar AK, Tripathi SC, Asia P, Sakarde A, Gopal N. COVID-19 and nutritional deficiency: A review of existing knowledge. Horm Mol Biol Clin Investig. 2021;42(1):77-85. https://doi.org/10.1515/hmbci-2020-0074 PMid:33544528 DOI: https://doi.org/10.1515/hmbci-2020-0074

Chen D, Li X, Song Q, Hu CH, Su F, Dai J, et al. Assessment of hypokalemia and clinical characteristics in patients With COVID-19 in Wenzhou, China. JAMA Netw Open. 2020;3(6):e2011122. https://doi.org/10.1001/jamanetworkopen.2020.11122 PMid:32525548 DOI: https://doi.org/10.1001/jamanetworkopen.2020.11122

Vodnar DC, Mitrea L, Teleky BE, Szabo K, Calinoiu LF, Nemes SA, et al. Coronavirus disease (COVID-19) caused by (SARS-CoV-2) infections: A real challenge for human gut microbiota. Front Cell Infect Microbiol. 2020;10:575559. https://doi.org/10.3389/fcimb.2020.575559 PMid:33363049 DOI: https://doi.org/10.3389/fcimb.2020.575559

Kumar M, Ji B, Babaei P, Das P, Lappa D, Ramakrishnan G, et al. Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling. Metab Eng. 2018;49:128-42. https://doi.org/10.1016/j.ymben.2018.07.018 PMid:30075203 DOI: https://doi.org/10.1016/j.ymben.2018.07.018

De Carvalho H, Richard MC, Chouihed T, Goffinet N, Le Bastard Q, Freund Y, et al. Electrolyte imbalance in COVID-19 patients admitted to the emergency department: A case control study. Intern Emerg Med. 2021;16(7):1945-50. https://doi.org/10.1007/s11739-021-02632-z PMid:33484453 DOI: https://doi.org/10.1007/s11739-021-02632-z

Dean AG, Arner TG, Sunki GG, Friedman R, Lantinga M, Sangam S, Fagan RF. Epi Info™, a Database and Statistics Program for Public Health Professionals. Atlanta, USA: Centers for Disease Control and Prevention; 2011.

De Onis M, Onyango AW. WHO child growth standards. Lancet. 2008;371(9608):204. https://doi.org/10.1016/S0140-6736(08)60131-2 PMid:18207015 DOI: https://doi.org/10.1016/S0140-6736(08)60131-2

Kurtz A, Grant K, Marano R, Arrieta A, Grant K Jr., Feaster W, et al. Long-term effects of malnutrition on severity of COVID-19. Sci Rep. 2021;11(1):14974. https://doi.org/10.1038/s41598-021-94138-z PMid:34294743 DOI: https://doi.org/10.1038/s41598-021-94138-z

Nuzhat S, Hasan ST, Palit P, Afroze F, Amin R, Alam A, et al. Health and nutritional status of children hospitalized during the COVID-19 pandemic, Bangladesh. Bull World Health Organ. 2022;100(2):98-107. https://doi.org/10.2471/BLT.21.285579 PMid:35125534 DOI: https://doi.org/10.2471/BLT.21.285579

El-Shafie AM, Kasemy ZA, Omar ZA, Alkalash SH, Salama AA, Mahrous KS, et al. Prevalence of short stature and malnutrition among Egyptian primary school children and their coexistence with Anemia. Ital J Pediatr. 2020;46(1):91. https://doi.org/10.1186/s13052-020-00855-y PMid:32600418 DOI: https://doi.org/10.1186/s13052-020-00855-y

Shekerdemian LS, Mahmood NR, Wolfe KK, Riggs BJ, Ross CE, McKiernan CA, et al. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units. JAMA Pediatr. 2020;174(9):868-73. https://doi.org/10.1001/jamapediatrics.2020.1948 PMid:32392288 DOI: https://doi.org/10.1001/jamapediatrics.2020.1948

Jin JM, Bai P, He W, Wu F, Liu XF, Han DM, et al. Gender differences in patients with COVID-19: Focus on severity and mortality. Front Public Health. 2020;8:152. https://doi.org/10.3389/fpubh.2020.00152 PMid:32411652 DOI: https://doi.org/10.3389/fpubh.2020.00152

Parums DV. Editorial: COVID-19 and Multisystem inflammatory syndrome in children (MIS-C). Med Sci Monit. 2021;27:e933369. https://doi.org/10.12659/MSM.933369 PMid:34075014 DOI: https://doi.org/10.12659/MSM.933369

Ahnstedt H, McCullough LD. The impact of sex and age on T cell immunity and ischemic stroke outcomes. Cell Immunol. 2019;345:103960. https://doi.org/10.1016/j.cellimm.2019.103960 PMid:31519365 DOI: https://doi.org/10.1016/j.cellimm.2019.103960

Mertens E, Peñalvo JL. The burden of malnutrition and fatal COVID-19: A global burden of disease analysis. Front Nutr. 2021;7:619850. https://doi.org/10.3389/fnut.2020.619850 PMid:33553234 DOI: https://doi.org/10.3389/fnut.2020.619850

Schaible UE, Kaufmann SH. Malnutrition and infection: Complex mechanisms and global impacts. PLoS Med. 2007;4(5):e115. https://doi.org/10.1371/journal.pmed.0040115 PMid:17472433 DOI: https://doi.org/10.1371/journal.pmed.0040115

Pourfridoni M, Abbasnia SM, Shafaei F, Razaviyan J, Heidari- Soureshjani R. Fluid and electrolyte disturbances in COVID-19 and their Complications. Biomed Res Int. 2021;2021:6667047. https://doi.org/10.1155/2021/6667047 PMid:33937408 DOI: https://doi.org/10.1155/2021/6667047

Alfano G, Ferrari A, Fontana F, Perrone R, Mori G, Ascione E, et al. Hypokalemia in patients with COVID-19. Clin Exp Nephrol. 2021;25(4):401-9. https://doi.org/10.1007/s10157-020-01996-4 PMid:33398605 DOI: https://doi.org/10.1007/s10157-020-01996-4

Noori M, Nejadghaderi SA, Sullman MJ, Carson-Chahhoud K, Ardalan M, Kolahi AA, et al. How SARS-CoV-2 might affect potassium balance via impairing epithelial sodium channels? Mol Biol Rep. 2021;48(9):6655-61. https://doi.org/10.1007/s11033-021-06642-0 PMid:34392451 DOI: https://doi.org/10.1007/s11033-021-06642-0

Hu W, Lv X, Li C, Xu Y, Qi Y, Zhang Z, et al. Disorders of sodium balance and its clinical implications in COVID-19 patients: A multicenter retrospective study. Intern Emerg Med. 2021;16(4):853-62. https://doi.org/10.1007/s11739-020-02515-9 PMid:33064253 DOI: https://doi.org/10.1007/s11739-020-02515-9

Gheorghe G, Ilie M, Bungau S, Stoian AP, Bacalbasa N, Diaconu CC. Is there a relationship between COVID-19 and hyponatremia? Medicina (Kaunas). 2021;57(1):55. https://doi.org/10.3390/medicina57010055 PMid:33435405 DOI: https://doi.org/10.3390/medicina57010055

Zimmer MA, Zink AK, Weißer CW, Vogt U, Michelsen A, Priebe HJ, et al. Hypernatremia a manifestation of COVID- 19: A case series. A A Pract. 2020;14(9):e01295. https://doi.org/10.1213/XAA.0000000000001295 PMid:32909725 DOI: https://doi.org/10.1213/XAA.0000000000001295

Ravell J, Chaigne-Delalande B, Lenardo M. X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia disease: A combined immune deficiency with magnesium defect. Curr Opin Pediatr. 2014;26(6):713-9. https://doi.org/10.1097/MOP.0000000000000156 PMid:25313976 DOI: https://doi.org/10.1097/MOP.0000000000000156

Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H, Bahel P, et al. Endotheliopathy in COVID-19-associated coagulopathy: Evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7(8):e575-82. https://doi.org/10.1016/S2352-3026(20)30216-7 PMid:32619411 DOI: https://doi.org/10.1016/S2352-3026(20)30216-7

Trapani V, Rosanoff A, Baniasadi S, Barbagallo M, Castiglioni S, Guerrero-Romero F, et al. The relevance of magnesium homeostasis in COVID-19. Eur J Nutr. 2021;61(2):625-36. https://doi.org/10.1007/s00394-021-02704-y PMid:34687321 DOI: https://doi.org/10.1007/s00394-021-02704-y

Stevens JS, Moses AA, Nickolas TL, Husain SA, Mohan S. Increased mortality associated with hypermagnesemia in severe COVID-19 illness. Kidney 360. 2021;2(7):1087-94. https://doi.org/10.34067/KID.0002592021 PMid:35368359 DOI: https://doi.org/10.34067/KID.0002592021

Quilliot D, Bonsack O, Jaussaud R, Mazur A. Dysmagnesemia in Covid-19 cohort patients: Prevalence and associated factors. Magnes Res. 2020;33:114-122. https://doi.org/10.1684/mrh.2021.0476 PMid:33678604 DOI: https://doi.org/10.1684/mrh.2021.0476

Wang R, He M, Kang Y. Hypophosphatemia at admission is associated with Increased Mortality in COVID-19 Patients. Int J Gen Med. 2021;14:5313-5322. https://doi.org/10.2147/IJGM. S319717 PMid:34526806 DOI: https://doi.org/10.2147/IJGM.S319717

Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv Chronic Kidney Dis. 2011;18(2):85-90. https://doi.org/10.1053/j.ackd.2010.11.004 PMid:21406292 DOI: https://doi.org/10.1053/j.ackd.2010.11.004

Levi M, Gratton E, Forster IC, Hernando N, Wagner CA, Biber J, et al. Mechanisms of phosphate transport. Nat Rev Nephrol. 2019;15(8):482-500. https://doi.org/10.1038/s41581-019-0159-y PMid:31168066 DOI: https://doi.org/10.1038/s41581-019-0159-y

Biber J, Hernando N, Forster I. Phosphate transporters and their function. Annu Rev Physiol. 2013;75:535-50. https://doi.org/10.1146/annurev-physiol-030212-183748 PMid:23398154 DOI: https://doi.org/10.1146/annurev-physiol-030212-183748

Datta BN, Stone MD. Hyperventilation and hypophosphataemia. Ann Clin Biochem. 2009;46(Pt 2):170-1. https://doi.org/10.1258/acb.2008.008199 PMid:19225028 DOI: https://doi.org/10.1258/acb.2008.008199

Pal R, Ram S, Zohmangaihi D, Biswas I, Suri V, Yaddanapudi LN, et al. High prevalence of hypocalcemia in non-severe COVID-19 patients: A retrospective case-control study. Front Med (Lausanne). 2021;7:590805. https://doi.org/10.3389/fmed.2020.590805 PMid:33490095 DOI: https://doi.org/10.3389/fmed.2020.590805

Wu MA, Fossali T, Pandolfi L, Carsana L, Ottolina D, Frangipane V, et al. Hypoalbuminemia in COVID-19: Assessing the hypothesis for underlying pulmonary capillary leakage. J Intern Med. 2021;289(6):861-72. https://doi.org/10.1111/joim.13208 PMid:33411411 DOI: https://doi.org/10.1111/joim.13208

Loffredo L, Oliva A, Paraninfi A, Ceccarelli G, Orlando F, Ciacci P, et al. An observed association between conjunctivitis and severity of COVID-19. J Infect. 2021;83(3):381-412. https://doi.org/10.1016/j.jinf.2021.06.006 PMid:34118275 DOI: https://doi.org/10.1016/j.jinf.2021.06.006

Viana-Llamas MC, Arroyo-Espliguero R, Silva-Obregón JA, Uribe-Heredia G, Núñez-Gil I, García-Magallón B, et al. Hypoalbuminemia on admission in COVID-19 infection: An early predictor of mortality and adverse events. A retrospective observational study. Med Clin (Engl Ed). 2021;156(9):428-36. https://doi.org/10.1016/j.medcle.2020.12.015 PMid:33969222 DOI: https://doi.org/10.1016/j.medcli.2020.12.018

Huang J, Cheng A, Kumar R, Fang Y, Chen G, Zhu Y, et al. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J Med Virol. 2020;92(10):2152-8. https://doi.org/10.1002/jmv.26003 PMid:32406952 DOI: https://doi.org/10.1002/jmv.26003

Chen C, Zhang Y, Zhao X, Tao M, Yan W, Fu Y. Hypoalbuminemia an indicator of the severity and prognosis of COVID-19 patients: A multicentre retrospective analysis. Infect Drug Resist. 2021;14:3699-710. https://doi.org/10.2147/IDR.S327090 PMid:34526790 DOI: https://doi.org/10.2147/IDR.S327090

Aziz M, Fatima R, Lee-Smith W, Assaly R. The association of low serum albumin level with severe COVID-19: A systematic review and meta-analysis. Crit Care. 2020;24(1):255. https://doi.org/10.1186/s13054-020-02995-3 PMid:32456658 DOI: https://doi.org/10.1186/s13054-020-02995-3

Cai SH, Liao W, Chen SW, Liu LL, Liu SY, Zheng ZD. Association between obesity and clinical prognosis in patients infected with SARS-CoV-2. Infect Dis Poverty. 2020;9(1):80. https://doi.org/10.1186/s40249-020-00703-5 PMid:32600411 DOI: https://doi.org/10.1186/s40249-020-00703-5

Kompaniyets L, Agathis NT, Nelson JM, Preston LE, Ko JY, Belay B, et al. Underlying medical conditions associated with severe COVID-19 illness among children. JAMA Netw Open. 2021;4(6):e2111182. https://doi.org/10.1001/jamanetworkopen.2021.11182 PMid:34097050 DOI: https://doi.org/10.1001/jamanetworkopen.2021.11182

Amin MT, Fatema K, Arefin S, Hussain F, Bhowmik DR, Hossain DS. Obesity, a major risk factor for immunity and severe outcomes of COVID-19. Biosci Rep. 2021;41(8):BSR20210979. https://doi.org/10.1042/BSR20210979 PMid:34350941 DOI: https://doi.org/10.1042/BSR20210979

Atef H. Nutritional fat modulation as a non-pharmacological approach to children infected with COVID-19, a challenge in food biochemistry. Egypt J Chem. 2022;65(3):689-98. https://doi.org/10.21608/ejchem.2021.87893.4234 DOI: https://doi.org/10.21608/ejchem.2021.87893.4234

Ritter A, Kreis NN, Louwen F, Yuan J. Obesity and COVID-19: Molecular mechanisms linking both pandemics. Int J Mol Sci. 2020;21(16):5793. https://doi.org/10.3390/ijms21165793 PMid:32806722 DOI: https://doi.org/10.3390/ijms21165793

Downloads

Published

2022-07-24

How to Cite

1.
Ibrahim HAA, Helmy E, Amin A, Mahmoud D. Biochemical and Anthropometric Nutritional Assessment in Children Infected with COVID-19: A Cross-sectional Study. Open Access Maced J Med Sci [Internet]. 2022 Jul. 24 [cited 2024 Nov. 4];10(B):1818-26. Available from: https://oamjms.eu/index.php/mjms/article/view/9782