Assessment of the Influence of Asymmetric Triacetate Cellulose Membrane on the Rate of Removal of Middle Molecular Weight Uremic Toxins in Patients Treated with Postdilution Online Hemodiafiltration

Authors

  • Marko Nenadović Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
  • Aleksandra Nikolić Clinic for Internal Medicine, University Medical Center Kragujevac, Kragujevac, Serbia
  • Marijana Stanojević-Pirković Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
  • Jasna Trbojević-Stanković Faculty of Medicine, University of Belgrade, Belgrade, Serbia; University Hospital Center “Dr Dragiša Mišović - Dedinje,” Belgrade, Serbia
  • Tomislav Nikolić Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Clinic for Urology, Nephrology and Dialysis, UCC Kragujevac, Kragujevac, Serbia
  • Dejan Petrović Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Clinic for Urology, Nephrology and Dialysis, UCC Kragujevac, Kragujevac, Serbia
  • Vuk Djulejić Institute of Anatomy, Medical Faculty, University of Belgrade, Belgrade, Serbia

DOI:

https://doi.org/10.3889/oamjms.2022.9847

Keywords:

hemodiafiltration, asymmetric triacetate cellulose membrane, uremic toxins, microinflammation, β2-microglobulin, interleukin 6, albumin

Abstract

BACKGROUND: Postdilution online hemodiafiltration (OL-HDF) effectively removes uremic toxins of middle molecular weight from the blood of patients with end-stage chronic kidney disease. The rate of removal of uremic toxins depends on the type of dialysis membrane, blood flow rate (Qb), net ultrafiltration flow rate (Qnuf), and total convective volume (Vconv).

AIM: The aim of this study was to examine the efficacy of asymmetric triacetate cellulose dialysis membrane in patients on post-dilution OL-HDF.

METHODS: Thirty-five patients treated with post-dilution OL-HDF hemodiafiltration for at least 3 months were examined. The main parameters for assessing the efficiency of removal of uremic toxins of middle molecular weight are the concentration of β2-microglobulin (β2-M) and interleukin-6 (IL-6) in serum before and after a single session of post-dilution OL-HDF. The followings were used for statistical analysis: Kolmogorov–Smirnov test, Student’s T test for bound samples and Wilcoxon test.

RESULTS: The average Vconv was 20.90 ± 3.30 liters/session. The β2-M reduction index during a single session of postdilution OL-HDF was 71.10 ± 6.39%, the IL-6 reduction index was 43.75 ± 15.60%, and the albumin reduction index was 4.55 ± 2.31%.

CONCLUSION: The asymmetric triacetate cellulose dialysis membrane effectively removes β2-M and IL-6 during a single session of postdilution OL-HDF. The β2-M reduction index is ∼70%, the IL-6 reduction index is ∼40%, and albumin loss is <4.0 g/4 h. The examined dialysis membrane and dialysis modality prevent the development of amyloidosis associated with dialysis, microinflammation and reduce the risk of developing atherosclerotic cardiovascular diseases in the population of patients treated with regular hemodiafiltration.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Cozzolino M, Mangano M, Stucchi A, Ciceri P, Conte F, Galassi A. Cardiovascular disease in dialysis patients. Nephrol Dial Transplant. 2018;33(Suppl_3):iii28-34. https://doi.org/10.1093/ndt/gfy174 PMid:30281132 DOI: https://doi.org/10.1093/ndt/gfy174

House AA, Wanner C, Sarnak MJ, Pina IL, McIntyre CW, Komenda P, et al. Heart failure in chronic kidney disease: Conclusions from a kidney disease: Improving global outcomes (KDIGO) controversies conference. Kidney Int. 2019;95(6):1304-17. https://doi.org/10.1016/j.kint.2019.02.022 PMid:31053387 DOI: https://doi.org/10.1016/j.kint.2019.02.022

Lekawanvijit S. Cardiotoxicity of uremic toxins: A driver of cardiorenal syndrome. Toxins (Basel). 2018;10(9):352. https://doi.org/10.3390/toxins10090352 PMid:30200452 DOI: https://doi.org/10.3390/toxins10090352

Kaesler N, Babler A, Floege J, Kramann R. Cardiac remodeling in chronic kidney disease. Toxins (Basel). 2020;12(3):161. https://doi.org/10.3390/toxins12030161 PMid:32150864 DOI: https://doi.org/10.3390/toxins12030161

Fujii H, Goto S, Fukagawa M. Role of uremic toxins for kidney, cardiovascular, and bone dysfunction. Toxins (Basel). 2018;10(5):202. https://doi.org/10.3390/toxins10050202 PMid:29772660 DOI: https://doi.org/10.3390/toxins10050202

Velasquez MT, Centron P, Barrows I, Dwivedi R, Raj DS. Gut microbiota and cardiovascular uremic toxicities. Toxins (Basel). 2018;10(7):287. https://doi.org/10.3390/toxins10070287 PMid:29997362 DOI: https://doi.org/10.3390/toxins10070287

Mair RD. Sirich TL, Meyer TW. Uremic toxin clearance and cardiovascular toxicities. Toxins (Basel). 2018;10(6):226. https://doi.org/10.3390/toxins10060226 PMid:29865226 DOI: https://doi.org/10.3390/toxins10060226

Wolley MJ, Hutchison CA. Large uremic toxins: An unsolved problem in end-stage kidney disease. Nephrol Dial Transplant. 2018;33(Suppl_3):iii6-iii11. https://doi.org/10.1093/ndt/gfy179 PMid:30281131 DOI: https://doi.org/10.1093/ndt/gfy179

Akchurin OM, Kaskel F. Update on inflammation in chronic kidney disease. Blood Purif. 2015;39(1-3):84-92. https://doi.org/10.1159/000368940 PMid:25662331 DOI: https://doi.org/10.1159/000368940

Nenadović M, Nikolić A, Pirković MS, Nikolić T, Petrović D, Stanković JT. Microinflammation in patients on hemodialysis: A practical approach. Ser J Exp Clin Res. 2021. https://doi.org/10.2478/sjecr-2021-0047

Ronco C, Clark WR. Haemodialysis membranes. Nat Rev Nephrol. 2018;14(6):394-410. https://doi.org/10.1038/s41581-018-0002-x PMid:29730670 DOI: https://doi.org/10.1038/s41581-018-0002-x

Haroon S, Davenport A. Choosing a dialyzer: What clinicians need to know. Hemodial Int. 2018;22(S2):S65-74. https://doi.org/10.1111/hdi.12702 PMid:30296005 DOI: https://doi.org/10.1111/hdi.12702

Kohlova M, Amorim CG, Araujo A, Santos-Silva A, Solich P, Montenegro MC. The biocompatibility and bioactivity of hemodialysis membranes: Their impact in end-stage renal disease. J Artif Organs. 2019;22(1):14-28. https://doi.org/10.1007/s10047-018-1059-9 PMid:30006787 DOI: https://doi.org/10.1007/s10047-018-1059-9

Said N, Lau WJ, Ho YC, Lim SK, Abidin MN, Ismail AF. A review of commercial developments and recent laboratory research of dialyzers and membranes for hemodialysis application. Membranes (Basel). 2021;11(10):767. https://doi.org/10.3390/membranes11100767 PMid:34677533 DOI: https://doi.org/10.3390/membranes11100767

Martin-Navarro J, Esteras R, Castillo E, Carriazo S, Fernandez Prado R, Gracia-Iguacel C, et al. Reactions to synthetic membranes dialyzers: Is there an increase in incidence? Kidney Blood Press Res. 2019;44(5):907-14. https://doi.org/10.1159/000501035 PMid: 31505506 DOI: https://doi.org/10.1159/000501035

Chen DP, Flythe JE. Dialysis-associated allergic reactions during continuous renal replacement therapy and hemodialysis: A case report. Hemodial Int. 2020;24(1):E5-9. https://doi.org/10.1111/hdi.12801 PMid:31743551 DOI: https://doi.org/10.1111/hdi.12801

Sahathevan S, Khor BH, Ng HM, Gafor AHA, Daud ZA, Mafra D, et al. Understanding development of malnutrition in hemodialysis patients: A narrative review. Nutrients. 2020;12(10):3147. https://doi.org/10.3390/nu12103147 PMid:33076282 DOI: https://doi.org/10.3390/nu12103147

Kaneko S, Yamagata K. Hemodialysis-related amyloidosis: Is it still relevant? Semin Dial. 2018;31(6):612-8. https://doi.org/10.1111/sdi.12720 PMid:29896815 DOI: https://doi.org/10.1111/sdi.12720

Tattersal JE, Ward RA, EUDIAL group. Online haemodiafiltration: Definition, dose quantification and safety revisited. Nephrol Dial Transplant. 2013;28(3):542-50. https://doi.org/10.1093/ndt/ gfs530 PMid:23345621 DOI: https://doi.org/10.1093/ndt/gfs530

Chapdelaine I, van Zuijewijn CL, Mostovaya IM, Levesque R, Davenport A, Blankestijn PJ, et al. Optimization of the convection volume in online post-dilution haemodiafiltration: Practical and technical issues. Clin Kidney J. 2015;8(2):191-8. https://doi.org/10.1093/ckj/sfv003 PMid:25815176 DOI: https://doi.org/10.1093/ckj/sfv003

Nenadović M, Jaćović S, Nikolić A, Kostović M, Drašković B, Jovanović M, et al. Postdilution online hemodiafiltration: Basic principles and clinical significance. Ser J Exp Clin Res. 2020. https://doi.org/10.2478/sjecr-2020-0055

Masacane I, Sakurai K. Current approaches to middle molecule removal: Room for innovation. Nephrol Dial Transplant. 2018;33(Suppl_3):iii12-iii21. https://doi.org/10.1093/ndt/gfy224 PMid:30281129 DOI: https://doi.org/10.1093/ndt/gfy224

Watanabe Y, Kawanishi H, Suzuki K, Nakai S, Tsuchida K, Tabei K, et al. Japanese society for dialysis therapy clinical guidelines for “maintenance hemodialysis: hemodialysis prescriptions”. Ther Apher Dial. 2015;19(Suppl 1):67-92. https://doi.org/10.1111/1744-9987.12294 DOI: https://doi.org/10.1111/1744-9987.12294

Tanaka Y, Michiwaki H, Asa H, Hirose D, Tao T, Minakuchi J. Multipotentials of new asymmetric cellulose triacetate membrane for on-line hemodiafiltration both in postdilution and predilution. Ren Replace Ther. 2019;5:21. https://doi.org/10.1186/s41100-019-0215-x DOI: https://doi.org/10.1186/s41100-019-0215-x

Macias N, Vega A, Abad S, Aragoncillo I, Garcia-Prieto AM, Santos A, et al. Middle molecule elimination in expanded haemodialysis: Only convective transport? Clin Kidney J. 2019;12(3):447-55. https://doi.org/10.1093/ckj/sfy097 DOI: https://doi.org/10.1093/ckj/sfy097

Prieto B, Miguel D, Costa M, Coto D, Alvarez FV. New quantitative electrochemiluminescence method (ECLIA) for interleukin-6 (IL-6) measurement. Clin Chem Lab Med. 2010;48(6):835-8. https://doi.org/10.1515/CCLM.2010.153 PMid:20298137 DOI: https://doi.org/10.1515/CCLM.2010.153

Kidney Disease: Improving Global Outcomes (KDIGO) CKD MBD Update Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl (2011). 2017;7(1):1-59. https://doi.org/10.1016/j.kisu.2017.04.001 PMid:30675420 DOI: https://doi.org/10.1016/j.kisu.2017.04.001

National Kidney Foundation. KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis. 2015;66(5):884-930. https://doi.org/10.1053/j.ajkd.2015.07.015 PMid:26498416 DOI: https://doi.org/10.1053/j.ajkd.2015.07.015

Sarnak MJ, Amann K, Bangalore S, Cavalcante JL, Charytan DM, Craig JC, et al. Chronic kidney disease and coronary artery disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;74(14):1823-38. https://doi.org/10.1016/j.jacc.2019.08.1017 PMid:31582143 DOI: https://doi.org/10.1016/j.jacc.2019.08.1017

Nelson AJ, Raggi P, Wolf M, Gold AM, Chertow GM, Roe MT. Targeting vascular calcification in chronic kidney disease. JACC Basic Trans Science. 2020;5(4):398-412. https://doi.org/10.1016/j.jacbts.2020.02.002 DOI: https://doi.org/10.1016/j.jacbts.2020.02.002

Urena-Torres P, D, Marco L, Raggi P, Garcia-Moll X, Brandenburg V, Mazzaferro S, et al. Valvular heart disease and calcification in CKD: More common than appreciated. Nephrol Dial Transplant. 2020;35(12):2046-53. https://doi.org/10.1093/ndt/gfz133 PMid:31326992 DOI: https://doi.org/10.1093/ndt/gfz133

Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular disease in chronic kidney disease: Pathophysiological insights and therapeutic options. Circulation. 2021;143(11):1157-72. https://doi.org/10.1161/CIRCULATIONAHA.120.050686 PMid:33720773 DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.050686

Genovesi S, Boriani G, Covic A, Vernooij RW, Combe C, Burlacu A, et al. Sudden cardiac death in dialysis patients: Different causes and management strategies. Nephrol Dial Transplant. 2021;36(3):396-405. https://doi.org/10.1093/ndt/gfz182 PMid:31538192 DOI: https://doi.org/10.1093/ndt/gfz182

Levi A, Simard T, Glover C. Coronary artery disease in patients with end-stage kidney disease; current perspective and gaps of knowledge. Semin Dial. 2020;33(3):187-97. https://doi.org/10.1111/sdi.12886 PMid:32449824 DOI: https://doi.org/10.1111/sdi.12886

Sakurai K, Hosoya H, Kurihara Y, Saito T. Suitability of α1-microglobulin reduction rate as a biomarker of removal efficiency of online hemodiafiltration: A retrospective cohort study. Ren Replace Ther. 2021;7:10. https://doi.org/10.1186/s41100-021-00326-y DOI: https://doi.org/10.1186/s41100-021-00326-y

Blankestijn PJ, Grooteman MP, Nube MJ, Bots ML. Clinical evidence on haemodiafiltration. Nephrol Dial Transplant. 2018;33(Suppl 3):iii53-8. https://doi.org/10.1093/ndt/gfy218 PMid:30281128 DOI: https://doi.org/10.1093/ndt/gfy218

Nenadović M, Petrović D, Trbojević-Stanković J. Beta-2 microglobulin removal with postdilution online hemodiafiltration comparison of three different dialysis membranes. Srp Arh Celok Lek. 2021;149:48 https://doi.org/10.2298/SARH210329048N DOI: https://doi.org/10.2298/SARH210329048N

Nenadović M, Jaćović S, Nikolić A, Kostović M, Drašković B, Jovanović M, et al. Assessment of the influence of postdilution online hemodiafiltration on the rate of removal of middle molecular weight uremic toxins. Ser J Exp Clin Res 2021. https://doi.org/10.2478/sjecr-2021-0005

Santos A, Macias N, Cruzado L, Vega A. The removal capacity of asymmetric cellulose triacetate during post-dilution online hemodiafiltration. Kidney Res Clin Pract. 2021;40(2):325-7. https://doi.org/10.23876/j.krcp.20.243 PMid:33866767 DOI: https://doi.org/10.23876/j.krcp.20.243

Maduell F, Ojeda R, Arias-Guillen M, Fontsere N, Vera M, Rodas L, et al. A new generation of cellulose triacetate suitable for online haemodiafiltration. Nefrologia (Engl Ed). 2018;38(2):161-8. https://doi.org/10.1016/j.nefro.2017.03.011 PMid:29198593 DOI: https://doi.org/10.1016/j.nefroe.2017.10.012

Donati G, Cappuccilli M, Donadei C, Righini M, Scrivo A, Gasperoni L, et al. Toxin removal and inflammatory state modulation during online hemodiafiltration using two different dialyzers (TRIAD2 Study). Methods Protoc. 2021;4(2):26. https://doi.org/10.3390/mps4020026 PMid:33921921 DOI: https://doi.org/10.3390/mps4020026

Vanommeslaeghe F, Josipovic I, Boone M, Dhondt A, Van Biesen W, Eloot S. A randomized cross-over study with objective quantification of the performance of an asymmetric triacetate and a polysulfone dialysis membrane using different anticoagulation strategies. Clin Kidney J. 2019;14(1):398-407. https://doi.org/10.1093/ckj/sfz163 PMid:33564444 DOI: https://doi.org/10.1093/ckj/sfz163

Vanommeslaeghe F, Josipovic I, Boone M, van der Tol A, DhondtA, van Biesen W, et al. How biocompatible haemodialysers can conquer the need for systemic anticoagulation even in post dilution haemodiafiltration: A cross-over study. Clin Kidney J. 2021;14(7):1752-9. https://doi.org/10.1093/ckj/sfaa219 DOI: https://doi.org/10.1093/ckj/sfaa219

Vandenbosch I, Dejongh S, Claes K, Bammens B, De Vusser K, Van Craenenbroeck A, et al. Strategies for asymmetrical triacetate dialyser heparin-free effective haemodialysis: The SAFE study. Clin Kidney J. 2021;14(8):1901-7. https://doi.org/10.1093/ckj/sfaa228 PMid:34345413 DOI: https://doi.org/10.1093/ckj/sfaa228

Canaud B. Recent advances in dialysis membranes. Curr Opin Nephrol Hypertens. 2021;30(6):613-22. https://doi.org/10.1097/MNH.0000000000000744 PMid:34475335 DOI: https://doi.org/10.1097/MNH.0000000000000744

Saha M, Allon M. Diagnosis, treatment, and prevention of hemodialysis emergencies. Clin J Am Soc Nephrol. 2017;12(2):357-69. https://doi.org/10.2215/CJN.05260516 PMid:27831511 DOI: https://doi.org/10.2215/CJN.05260516

Greenberg KI, Choi MJ. Hemodialysis emergencies: Core curriculum 2021. Am J Kidney Dis. 2021;77(5):796-809. https://doi.org/10.1053/j.ajkd.2020.11.024 PMid:33771393 DOI: https://doi.org/10.1053/j.ajkd.2020.11.024

Van Gelder MK, Abrahams AC, Joles JA, Kaysen GA, Gerritsen KG. Albumin handling in different hemodialysis modalities. Nephrol Dial Transplant. 2018;33(6):906-13. https://doi.org/10.1093/ndt/gfx191 PMid:29106652 DOI: https://doi.org/10.1093/ndt/gfx191

Fournier A, Birmele B, Francois M, Prat L, Halimi JM. Factors associated with albumin loss in post-dilution hemodiafiltration and nutritional consequences. Int J Artif Organs. 2015;38(2):76-82. https://doi.org/10.5301/ijao.5000389 PMid:25744197 DOI: https://doi.org/10.5301/ijao.5000389

Ramon MA, Miguel PM, Bohorguez L, de Sequera P, Bouarich H, Perez-Garcia R, et al. Asymmetric cellulose triacetate is a safe and effective alternative for online haemodiafiltration. Nefrologia (Engl Ed). 2018;38(3):315-20. https://doi.org/10.1016/j.nefro.2017.11.015 PMid:29454540 DOI: https://doi.org/10.1016/j.nefroe.2018.04.003

Wolley M, Jardine M, Hutchison CA. Exploring the clinical relevance of providing increased removal of large middle molecules. Clin J Am Soc Nephrol. 2018;13(5):805-14. https://doi.org/10.2215/CJN.10110917 PMid:29507008 DOI: https://doi.org/10.2215/CJN.10110917

Canaud B, Kohler K, Sichart JM, Moller S. Global prevalent use, trends and practices in haemodiafiltration. Nephrol Dial Transplant. 2020;35(3):398-407. https://doi.org/10.1093/ndt/gfz005 PMid:30768205 DOI: https://doi.org/10.1093/ndt/gfz005

Marcelli D, Scholz C, Ponce P, Sousa T, Kopperschmidt P, Grassmann A, et al. High-volume postdilution hemodiafiltration is a feasible option in routine clinical practice. Artif Organs. 2015;39(2):142-9. https://doi.org/10.1111/aor.12345 PMid:25277688 DOI: https://doi.org/10.1111/aor.12345

Maduell F, Ojeda R, Arias-Guillen M, Fontsere N, Vera M, Masso E, et al. Optimization of dialysate flow in on-line hemodiafiltration. Nefrologia. 2015;35(5):473-8. https://doi.org/10.1016/j.nefro.2015.06.019 PMid:26306957 DOI: https://doi.org/10.1016/j.nefroe.2015.11.002

Van Zuijdewijn CL, Chapdelaine I, Nube MJ, Blankestijn PJ, Bots ML, Konings CJ, et al. Achieving high convection volumes in postdilution online hemodiafiltration: Aprospective multicenter study. Clin Kidney J. 2017;10(6):804-12. https://doi.org/10.1093/ckj/sfw140 PMid:29225810 DOI: https://doi.org/10.1093/ckj/sfw140

Canaud B, Vienken J, Ash S, Ward R, Kidney Health Initiative HDF Workgroup. Hemodiafiltration to address unmet medical needs ESKD patients. Clin J Am Soc Nephrol. 2018;13(9):1435-43. https://doi.org/10.2215/CJN.12631117 PMid: 29511057 DOI: https://doi.org/10.2215/CJN.12631117

Guedes M, Dambiski AC, Canhada S, Barra AB, Poli-De-Figueiredo CE, Neto AL, et al. Achieving high convective volume in hemodiafiltration: Lessons learned after successful implementation in the HDFit trial. Hemodial Int. 2021;25(1):50-9. https://doi.org/10.1111/hdi.12891 PMid:33058473 DOI: https://doi.org/10.1111/hdi.12891

Kim DH, Lee YK, Park HC, Kim J, Yun KS, Cho A, et al. Stepwise achievement of high convection volume in post-dilution hemodiafiltration: A prospective observational study. Semin Dial. 2021;34(5):368-74. https://doi.org/10.1111/sdi.12966 PMid:33774852 DOI: https://doi.org/10.1111/sdi.12966

Downloads

Published

2022-12-28

How to Cite

1.
Nenadović M, Nikolić A, Stanojević-Pirković M, Trbojević-Stanković J, Nikolić T, Petrović D, Djulejić V. Assessment of the Influence of Asymmetric Triacetate Cellulose Membrane on the Rate of Removal of Middle Molecular Weight Uremic Toxins in Patients Treated with Postdilution Online Hemodiafiltration. Open Access Maced J Med Sci [Internet]. 2022 Dec. 28 [cited 2024 Apr. 25];10(B):2639-47. Available from: https://oamjms.eu/index.php/mjms/article/view/9847