Cardiac Affection in Type 1 Diabetic Patients in Relation to Omentin

Authors

  • Soha M. Abd El Dayem Pediatrics Department, National Research Centre, Cairo
  • Ahmed A. Battah Critical Care Department, Cairo University, Cairo
  • Amal El Shehaby Cairo University, Medical Biochemistry, Cairo

DOI:

https://doi.org/10.3889/oamjms.2015.132

Keywords:

Cardiovascular, autonomic neuropathy, coronary calcification, type 1 diabetic patient, 24 hr holter

Abstract

AIM: To evaluate cardiac affection in type 1 diabetes in relation to Omentin.

PATIENTS AND METHODS: Sixty two diabetics and 30 volunteer of the same age and sex were included as a control group. Blood sample was taken for assessment of omentin and oxidized low density lipoprotein (OxLDL), glycosylated hemoglobin (HbA1) and lipid profile. Urine sample was taken for assessment of albumin/ creatinine ratio. 24 hour holter was also done. T-test, simple correlation followed by stepwise multiple regression analysis was used for analysis of data.

RESULTS: Parameters of 24 hour holter were significantly lower in diabetics. Omentin was significantly lower, while OxLDL were significantly higher than controls. RMSSD, ST deviation and OxLDL were the parameters related to omentin by stepwise multiple regression analysis in diabetics.

CONCLUSION: Diabetic patients had a cardiac autonomic neuropathy. A significant reduction of omentin and elevation OxLDL imply that they influence glucose metabolism in type 1 diabetes. Omentin had a significant relation to 24 hr holter which may reflect its role in cardiac affection. Omentin and OxLDL had a role in renal affection.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89:2548–2556.

http://dx.doi.org/10.1210/jc.2004-0395 DOI: https://doi.org/10.1210/jc.2004-0395

PMid:15181022

Fukuhara AM, Matsuda M, Nishizawa K, Segawa M, Tanaka K, Kishimoto Y, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307:426–430.

http://dx.doi.org/10.1126/science.1097243 DOI: https://doi.org/10.1126/science.1097243

PMid:15604363

Heidemann C, Sun Q, van Dam RM, Meigs JB, Zhang C, Tworoger SS, et al. Total and high-molecular-weight adiponectin and resistin in relation to the risk for type 2 diabetes in women. Ann Intern Med. 2008;149(5):307–316.

http://dx.doi.org/10.7326/0003-4819-149-5-200809020-00005 DOI: https://doi.org/10.7326/0003-4819-149-5-200809020-00005

PMid:18765700 PMCid:PMC3874083

Wannamethee S.G., Lowe G.D.O., Rumley A, Cherry L, Whincup PH, Sattar N, Adipokines and risk of type 2 diabetes in older men. Diabetes Care. 2007;30:1200–1205.

http://dx.doi.org/10.2337/dc06-2416 DOI: https://doi.org/10.2337/dc06-2416

PMid:17322479

Ahima RS, Lazar MA, Adipokines and the peripheral and neural control of energy balance. Mol Endocrinol. 2008;22: 1023–1031.

http://dx.doi.org/10.1210/me.2007-0529 DOI: https://doi.org/10.1210/me.2007-0529

PMid:18202144 PMCid:PMC2366188

Hivert MF, Sullivan LM, Fox CS, Nathan DM, D'Agostino RB, Wilson WF, et al. Associations of adiponectin, resistin, and tumor necrosis factor-a with insulin resistance. J Clin Endocrinol Metab. 2008;93:3165–3172.

http://dx.doi.org/10.1210/jc.2008-0425 DOI: https://doi.org/10.1210/jc.2008-0425

PMid:18492747 PMCid:PMC2515087

Lorenzo M, Ferna’ndez-Veledo S, Vila-Bedmar R, Garcia- Guerra L, De Alvaro CDC, Nieto-Vazquez I. Insulin resistance induced by tumor necrosis factor-a in myocytes and brown adipocyte. J Anim Sci. 2008;86:E94–E104.

http://dx.doi.org/10.2527/jas.2007-0462 DOI: https://doi.org/10.2527/jas.2007-0462

PMid:17940160

Yang R, Xu A, Pray J, Hu H, Jadhao S, Hansen B, et al. Cloning of omentin, a new adipocytokine from omental fat tissue in humans. Diabetes 2003;52(supplement 1):1-A730.

Fu M, Gong DW, Damcott C, Sabra M, Yang RZ, Pollin TI, et al. Systematic analysis of omentin- 1 and omentin -2 on 1q23 as candidate genes for type 2 diabetes in the old order amish. Diabetes. 2004;53:A59. DOI: https://doi.org/10.2337/diabetes.53.12.3292

Jean PSt, Husueh WC, Mitchell B, Ehm M, Wanger M, Burns D, et al. Association between diabetes, obesity, glucose and insulin levels in the old older amish and SNPs on 1q21–23. Am J Hum Genet. 2000;67:332–337.

Xiang K, Wang Y, Zheng T, Jia W, Li J, Chen L, et al. Genome-wide search for type 2 diabetes/impaired glucose homeostasis susceptibility genes in the Chinese: significant linkage to chromosome 6q21–q23 and chromosome 1q21– q24. Diabetes. 2004;53:228–234.

http://dx.doi.org/10.2337/diabetes.53.1.228 DOI: https://doi.org/10.2337/diabetes.53.1.228

PMid:14693720

Vionnet N, Hani ElH, Dupont S, Gallina S, Francke S, Dotte S, et al. Genome wide search for type 2 diabetes susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21–q24. Am J Hum Genet. 2000;67:1470–1480.

http://dx.doi.org/10.1086/316887 DOI: https://doi.org/10.1086/316887

PMid:11067779 PMCid:PMC1287924

de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56:1655–1661.

http://dx.doi.org/10.2337/db06-1506 DOI: https://doi.org/10.2337/db06-1506

PMid:17329619

Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC, et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab. 2006;290:E1253–E1261.

http://dx.doi.org/10.1152/ajpendo.00572.2004 DOI: https://doi.org/10.1152/ajpendo.00572.2004

PMid:16531507

Pan HY, Guo L, Li Q. Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Research and Clinical Practice. 2010;88: 29–33.

http://dx.doi.org/10.1016/j.diabres.2010.01.013

PMid:20129687

Tanner JM, Hiernaux J, Jarman S. Growth and physical studies. In: Weiner JS, Lourie JA, editors. Human biology: a guide to field methods. Oxford: Blackwell Scientific Publ., 1969:pp. 3–41.

Cameron N. The methods of auxological anthropology. In: Falkner F, Tanner JM, editors. Human growth 3 Methodology. New York: Plenum Press, 1986:pp. 3–46. DOI: https://doi.org/10.1007/978-1-4615-7198-8_1

PMid:3956717

Flegg HM. An investigation for the determination of serum cholesterol by an enzymatic method. Ann Clin Biochem. 1973;10:79–84.

http://dx.doi.org/10.1177/000456327301000125 DOI: https://doi.org/10.1177/000456327301000125

Marques-Vidal P, Ferrario M, Kuulasmaa K, Grafnetter D, Moltchanov V, for the WHO MONICA Project. Quality assessment of data on HDL cholesterol in the WHO MONICA Project, 1999. Available at: URL: http://www.thl.fi/publications/monica/hdl/hdlqa.htm URN:NBN:fi-fe19991137.

Danilova LA, Lopatina NI. Colorimetric method of determining glycosylated haemoglobin. Lab Delo. 1986;5:282–3.

Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Eng J Med. 1984;310:356–60.

http://dx.doi.org/10.1056/NEJM198402093100605 DOI: https://doi.org/10.1056/NEJM198402093100605

PMid:6690964

Craig WY, Poulin SE, Nelson CP, Ritchie RF. An ELISA method for detection and quantitation of IgG antibody against oxidized low density lipoprotein: the effect of blocking buffer and the method of data expression on experimental findings. Clin Chem. 1994;40:882–8. DOI: https://doi.org/10.1093/clinchem/40.6.882

PMid:8087982

Chiat A. Methods for assessing lipid and lipoprotein oxidation. Curr Opin Lipidol. 1992;3:389–94.

http://dx.doi.org/10.1097/00041433-199212000-00007 DOI: https://doi.org/10.1097/00041433-199212000-00007

Welch's PD. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms. IEEE Transactions on Audio and Electroacoustics. 1967;15:70-73.

http://dx.doi.org/10.1109/TAU.1967.1161901 DOI: https://doi.org/10.1109/TAU.1967.1161901

Cowan MJ. Measurement of heart rate variability. Western Journal of Nursing Research. 1995;17(1):32–48. 101–11. DOI: https://doi.org/10.1177/019394599501700104

Faulkner MS, Quinn L, Fritschi C. Microalbuminuria and Heart Rate Variability in Adolescents with Diabetes. J Pediatr Health Care. 2010;24(1):34- 47.

http://dx.doi.org/10.1016/j.pedhc.2009.01.002 DOI: https://doi.org/10.1016/j.pedhc.2009.01.002

PMid:20122476 PMCid:PMC2819478

Kleiger RE, Miller JP, Bigger JTJr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. American Journal of Cardiology. 1987;59(4):256– 62.

http://dx.doi.org/10.1016/0002-9149(87)90795-8 DOI: https://doi.org/10.1016/0002-9149(87)90795-8

Kleiger RE, Stein PK, Bosner MS, Rottman JN. Time domain measurements of heart rate variability. Cardiol Clin. 1992;10:487-98. DOI: https://doi.org/10.1016/S0733-8651(18)30230-3

PMid:1504980

Bazett HC. An analysis of the time relationships of the electrocardiograms. Annals of Noninvasive Electrocardiology. 1997;2(2): 177–194.

http://dx.doi.org/10.1111/j.1542-474X.1997.tb00325.x DOI: https://doi.org/10.1111/j.1542-474X.1997.tb00325.x

Boysen A, Lewin MA, Hecker W, Leichter HE, Uhlemann F. Autonomic function testing in children and adolescents with diabetes mellitus. Pediatric Diabetes. 2007;8(5):261–64.

http://dx.doi.org/10.1111/j.1399-5448.2007.00254.x DOI: https://doi.org/10.1111/j.1399-5448.2007.00254.x

PMid:17850468

Faulkner MS, Hathaway DK, Milstead EJ, Burghen GA. Heart rate variability in adolescents and adults with T1DM. Nursing Research. 2001;50(2):95–104.

http://dx.doi.org/10.1097/00006199-200103000-00005 DOI: https://doi.org/10.1097/00006199-200103000-00005

PMid:11302298

Faulkner MS, Quinn L, Rimmer JH, Rich BH. Cardiovascular endurance and heart rate variability in adolescents with type 1 or type 2 diabetes. Biological Research for Nursing. 2005;7(1):16–29.

http://dx.doi.org/10.1177/1099800405275202 DOI: https://doi.org/10.1177/1099800405275202

PMid:15920000 PMCid:PMC1447599

Chen HS, Wu TE, Jap TS, Lee SH, Wang ML, Lu RA, et al. Decrease heart rate variability but preserve postural blood pressure change in type 2 diabetes with microalbuminuria. J. Clin Med Assoc. 2006;69(6):254–58.

http://dx.doi.org/10.1016/S1726-4901(09)70252-7 DOI: https://doi.org/10.1016/S1726-4901(09)70252-7

Gandhi RA, Marques JL, Selvarajah D, Emary C, Tesfaye S. Painful diabetic neuropathy is associated with greater autonomic dysfunction than painless diabetic neuropathy. Diabetes Care. 2010;33(7):1585–90.

http://dx.doi.org/10.2337/dc09-2314 DOI: https://doi.org/10.2337/dc09-2314

PMid:20587724 PMCid:PMC2890363

Devaraj S, Dasu MR, Rockwood J, Winter W, Griffen SC, Jialal I. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab. 2008; 93:578-583.

http://dx.doi.org/10.1210/jc.2007-2185 DOI: https://doi.org/10.1210/jc.2007-2185

PMid:18029454 PMCid:PMC2243229

Bingley PJ, Mahon JL, Gale EA, European Nicotinamide Diabetes Intervention Trial Group. Insulin Resistance and Progression to Type 1 Diabetes in the European Nicotinamide Diabetes Intervention Trial (ENDIT). Diabetes Care. 2008; 31:146-150.

http://dx.doi.org/10.2337/dc07-0103 DOI: https://doi.org/10.2337/dc07-0103

PMid:17959864

Tan BK, Adya R and Randeva HS. Omentin: A novel link between inflammation, diabesity, and cardiovascular Disease. Trends Cardiovasc Med. 2010;20:143-148.

http://dx.doi.org/10.1016/j.tcm.2010.12.002 DOI: https://doi.org/10.1016/j.tcm.2010.12.002

PMid:21742269

Cai RC, Wei L, DI JZ, Yu HY, Bao YQ, Jia WP. Expression of omentin in adipose tissues in obese and type 2 diabetic patients. Zhonghua Yi Xue Za Zhi. 2009;89:381-384.

PMid:19567114

Pan HY, Guo L, Li Q. Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract. 2010;88:29-33.

http://dx.doi.org/10.1016/j.diabres.2010.01.013 DOI: https://doi.org/10.1016/j.diabres.2010.01.013

PMid:20129687

Tan BK, Adya R, Farhatullah S, Lewandowski KC, O'Hare P, Lehnert H, et al. Omentin-1, a novel adipokine, is decreased in overweight insulin resistant women with the polycystic ovary syndrome: ex vivo and in vivo regulation of omentin-1 by insulin and glucose. Diabetes. 2008;57:801-808.

http://dx.doi.org/10.2337/db07-0990 DOI: https://doi.org/10.2337/db07-0990

PMid:18174521

Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153:907-917.

http://dx.doi.org/10.1016/j.ahj.2007.03.019 DOI: https://doi.org/10.1016/j.ahj.2007.03.019

PMid:17540190

Tan BK, Pua S, Syed F, Lewandowski KC, O'Hare JP, Randeva HS. Decreased plasma omentin-1 levels in type 1 diabetes mellitus. Diabet Med. 2008;25(10):1254–1255.

http://dx.doi.org/10.1111/j.1464-5491.2008.02568.x DOI: https://doi.org/10.1111/j.1464-5491.2008.02568.x

PMid:19046210

Krupinski J, Font A, Luque A, et al. Angiogenesis and inflammation in carotid atherosclerosis. Front Biosci. 2008; 13:6472-6482.

http://dx.doi.org/10.2741/3167 DOI: https://doi.org/10.2741/3167

PMid:18508673

Leal VO, Mafra D. Adipokines in obesity. Clinica Chimica Acta. 2013;419:87–94.

http://dx.doi.org/10.1016/j.cca.2013.02.003 DOI: https://doi.org/10.1016/j.cca.2013.02.003

PMid:23422739

Published

2015-12-13

How to Cite

1.
Abd El Dayem SM, Battah AA, El Shehaby A. Cardiac Affection in Type 1 Diabetic Patients in Relation to Omentin. Open Access Maced J Med Sci [Internet]. 2015 Dec. 13 [cited 2024 Apr. 24];3(4):699-704. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2015.132

Issue

Section

B - Clinical Sciences

Most read articles by the same author(s)

1 2 > >>