Balinese Cultivar of Purple Sweet Potato Improved Neurological Score and BDNF and Reduced Caspase-Independent Apoptosis among Wistar Rats with Ischemic Stroke

Authors

  • I Made Oka Adnyana Department of Neurology, Sanglah Hospital, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
  • Raka Sudewi Department of Neurology, Sanglah Hospital, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
  • Purwa Samatra Department of Neurology, Sanglah Hospital, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
  • Suprapta Suprapta Biopesticide Laboratory, Faculty of Agriculture, Udayana University, Denpasar, Bali, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2019.019

Keywords:

Ischemic stroke, Balinese cultivate of purple potato extract, Neurological score, AIF, BDNF, Apoptosis

Abstract

BACKGROUND: Ischemic stroke occurs due to the abrupt occlusion in the brain which leads to neuronal death. Neuronal death in ischemic stroke is due to increase production of reactive oxygen species (ROS). Neuronal death occurs via necrosis and apoptosis mechanisms. Apoptosis can either occur via extrinsic or intrinsic pathway. Meanwhile, the intrinsic pathway can be caspase-dependent or independent. Anthocyanin is a natural pigment with antioxidant, anti-inflammatory, anti-cancer, and neuroprotective properties. Balinese cultivate of purple potato extract contains a high level of anthocyanin and has been proven for its antioxidant activity.

AIM: Antioxidant effect of Balinese cultivates purple potato extract has not been studied on an animal model with ischemic stroke. Accordingly, we would like to study the effect of antioxidant properties from Balinese cultivate of purple potato extract by assessing the neurological score, BNDF concentration, and caspase-independent apoptosis by measuring AIF concentration on Wistar rats with ischemic stroke.

METHODS: This was an experimental study using male Wistar rats age between 12-14 weeks weigh between 200 to 250 g.

RESULTS: This study demonstrated a significant difference of neurological score on day 3 among control versus treatment groups. Balinese cultivate of purple potato extract markedly reduced AIF, increased BDNF, and suppressed apoptosis among treatment group when compared with the control group.

CONCLUSION: We have proven the efficacy of antioxidant activity of anthocyanin derived from Balinese cultivar of purple sweet potato by elevated AIF levels, lower apoptosis rate, improved neurological score on day-3 to day-7 post-stroke, as well as increased BDNF levels.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. International journal of stroke. 2009; 4(6):461-70. https://doi.org/10.1111/j.1747-4949.2009.00387.x PMid:19930058 DOI: https://doi.org/10.1111/j.1747-4949.2009.00387.x

Mukherjee D and Patil CG. Epidemiology and global burden of stroke. World Neurosurgery. 2011; 76:885-90. https://doi.org/10.1016/j.wneu.2011.07.023 PMid:22182277 DOI: https://doi.org/10.1016/j.wneu.2011.07.023

Niizuma K, Endo H, Chan PH. Oxidative stress and mitochindria dysfunction as determinants of ischemic neuroanal death and survival. J Neurochem. 2009; 109(1):133-8. https://doi.org/10.1111/j.1471-4159.2009.05897.x PMid:19393019 PMCid:PMC2679225 DOI: https://doi.org/10.1111/j.1471-4159.2009.05897.x

Circu M and Aw TY. Reactive Oxygen Species, Celluler redox system and apoptosis. Free Radical Biology and Medicine. 2010; 48:749-62. https://doi.org/10.1016/j.freeradbiomed.2009.12.022 PMid:20045723 PMCid:PMC2823977 DOI: https://doi.org/10.1016/j.freeradbiomed.2009.12.022

Duthie GG, Duthie SJ, Kyle JA. Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutrition research reviews. 2000; 13(1):79-106. https://doi.org/10.1079/095442200108729016 PMid:19087434 DOI: https://doi.org/10.1079/095442200108729016

Hwang YP, Choi JH, Choi JM, Chung YC, Jeomg HG. Protective mechanisms of anthocyanin from purple sweet potato against tert-butyl hydroperoxie induced hepatotoxicity. Food Chem Toxicol. 2011; 49:93-9. https://doi.org/10.1016/j.fct.2010.10.002 PMid:20934476 DOI: https://doi.org/10.1016/j.fct.2011.05.021

Kim SM, Chung MJ, Ha TJ, Choi HN, Jang SJ, Kim SO, et al. Neuroprotective effects of black soybean anthhocyanin via inactivation ASK1-JNK/p38 pathways and mobilization of celluler sialic acids. Life Sciences. 2012; 90: 874-82. https://doi.org/10.1016/j.lfs.2012.04.025 PMid:22575822 DOI: https://doi.org/10.1016/j.lfs.2012.04.025

Suprapta DN, Antara M, Arya N, Sudana M, Duniaji AS, Sudarma M. Review of plantation cultivation aspects and the application of yams as an alternative food source. Report of joint research cooperation BAPEDA Bali and Faculty of Agriculture UNUD, 2004.

Jawi IM, Sutirta-Yasa IWP, Suprapta, DN, Mahendra AN. Hypoglycemic and Antioxidant Activities of Balinese Purple Sweet Potato (Ipomea Batatas L) in Induced Diabetic Rats. CIBTeech Journal of Pharmaceutical Sciences. 2012; 1(2-3):1-6.

Jawi IM, Wita IW, Suprapta DN. Aqueous Extract of Purple Sweet Potato Tuber Increases SOd-2 and decrease VCAM-1 Expression by increasing Nrf2 Expression in The Aortic Endothelia of Hypercholetrolemic rabbits. Journal of Biology, Agriculture and Healthcare. 2014; 4(10):76-84.

Adnyana IMO, Sudewi AAR, Samatra DPGP, Suprapta DN, Aulanni’am Aulanni’am. A simple method to stimulate ischemic stroke in Wistar rat for animal testing. Bali Medical Journal. 2016; 1:145-9. DOI: https://doi.org/10.15562/bmj.v6i1.430

Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. 1986. Evaluation of 2,3,5-Triphenyltetrazolium Chloride as a Stain for Detection and Quantification of Experimental Cerebral Infarction Rats. Stroke. 1986; 17(3):472-6. https://doi.org/10.1161/01.STR.17.3.472 PMid:3715945 DOI: https://doi.org/10.1161/01.STR.17.6.1304

Rizk NN, Rafols J, Dunbar JC. Cerebral ischemia and induced apoptosis and necrosis in normal and diabetic rats. Brain Res. 2005; 1(2):1-9. https://doi.org/10.1016/j.brainres.2005.05.036 PMid:16038884 DOI: https://doi.org/10.1016/j.brainres.2005.05.036

Chan P. Reactive oxygen radical in signaling and damage in the ischemic brain.J. Cereb Blood Flow Metab. 2001; 21:2-14. https://doi.org/10.1097/00004647-200101000-00002 PMid:11149664 DOI: https://doi.org/10.1097/00004647-200101000-00002

Rajanikant GK, Zemke D, Senut MC, Frenkel MB, Chen AF, Gupta R, et al. Carnosine is neuroprotective againts permanent focal cerebral ischemia in mice. Stroke; 2007; 38:3023-31. https://doi.org/10.1161/STROKEAHA.107.488502 PMid:17916766 DOI: https://doi.org/10.1161/STROKEAHA.107.488502

Cassidy A, Mukamal KJ, Liu L, Franz M, Eliassen AH, Rimm EB. A high anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation. 2013; 127(2):188-96. https://doi.org/10.1161/CIRCULATIONAHA.112.122408 PMid:23319811 PMCid:PMC3762447 DOI: https://doi.org/10.1161/CIRCULATIONAHA.112.122408

Gao T, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A. Habitual intake of dietary falvonoids and risk of Parkinson disease. Neurology. 2012; 78(15):138-45. https://doi.org/10.1212/WNL.0b013e31824f7fc4 PMid:22491871 PMCid:PMC3320056 DOI: https://doi.org/10.1212/WNL.0b013e31824f7fc4

Cowansage KK, LeDoux JE, Monfils MH. Brain-derived neurotrophic factor: a dynamic gate keeper of neural plasticity. Curr Mol Pharmacol. 2010; 3(1):12-29. https://doi.org/10.2174/1874467211003010012 PMid:20030625 DOI: https://doi.org/10.2174/1874467211003010012

Ploughman M, Windle V, Crystal L, MacLellan, White N, Dore JJ, et al. Brain-Drived neurotrophic Factor Contributes to recovery of skilled Reaching After Focal ischemia in rats. Stroke. 2009; (40):1490-5. https://doi.org/10.1161/STROKEAHA.108.531806 PMid:19164786 DOI: https://doi.org/10.1161/STROKEAHA.108.531806

Patapoutian A, Reichart LF. Trk receptors: mediators of neurontrophin action. Curr Opin in Neurobiol. 2001; 11(3):272-80. https://doi.org/10.1016/S0959-4388(00)00208-7 DOI: https://doi.org/10.1016/S0959-4388(00)00208-7

Manning BD and Cantley LC. AKT/PKB signaling: Navigating downstream. Cell. 2007; 129:1261-74. https://doi.org/10.1016/j.cell.2007.06.009 PMid:17604717 PMCid:PMC2756685 DOI: https://doi.org/10.1016/j.cell.2007.06.009

Yao R-Q, Qi D-S, Yu H-L, Liu J, Yang L-H, Wu X-X. Quercetin Attenuates Cell Apoptosis in Focal Cerebral Ischemia Rat Brain Via Activation of BDNF–TrkB–PI3K/Akt Signaling Pathway. Neurochemical Research. 2012; 37(12):2777-86. https://doi.org/10.1007/s11064-012-0871-5 PMid:22936120 DOI: https://doi.org/10.1007/s11064-012-0871-5

McDonald E, Van der Lee H, Pocock D, Cole C, Thomas N, VandenBerg PM, Bourtchouladze R,et al. A novel phosphodieterase type 4 inhibitor, HT-0712, enhance rehabilitation-dependent motor recovery and cortical reorganization after focal cortical ischemia. Neurorehabil Neurla repair. 2007; 21:486-96. https://doi.org/10.1177/1545968307305521 PMid:17823313 DOI: https://doi.org/10.1177/1545968307305521

Brass M, Queenan B, Susin SA. Program cell death via mitochondria: Different mode of dying. Biochemistry. 2005; 70:231-9. DOI: https://doi.org/10.1007/s10541-005-0105-4

Min J, Yu SW, Baek SH, Nair KM, Baw OK, Bhatt A, et al. Neuroprotective effect of cyanidine-3-o-glucoside anthocyanin in mice with focal cerebral iascemia. Neuroscience letters. 2011; 500:157-61. https://doi.org/10.1016/j.neulet.2011.05.048 PMid:21651957 DOI: https://doi.org/10.1016/j.neulet.2011.05.048

Mattson MP, Duan W, Pedersen WA, Culmsee C. Neurodegenerative disorder and ischemic brain diseases. Apoptosis. 2001; 6:69-81. https://doi.org/10.1023/A:1009676112184 PMid:11321043 DOI: https://doi.org/10.1023/A:1009676112184

Kowaltowski AJ, Katilho RF, Vercesi AE. Mitochondria permeability transtition and oxidative stres. FEBS Letter. 2001; 495:12-15. https://doi.org/10.1016/S0014-5793(01)02316-X DOI: https://doi.org/10.1016/S0014-5793(01)02316-X

Grasso S, Menedez-Guitierresz P, Carrasco-Garcia E, Mayor-Lopez L, Tristance E, Rocamora-Reverte L, et al. Cell death and cancer. Novel therapeutic strategies. In Apoptosis and medicine, Intek open science. 2012; 67-110. DOI: https://doi.org/10.5772/51285

Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF. Purple sweet potato color alleviates D galactose-indeuced brain aging in old mice by promoting survival of neurons via PI3K pathway and inhibting cytochrome c-mediated apoptosis. Brain pathology. 2010; 20:598-612. https://doi.org/10.1111/j.1750-3639.2009.00339.x PMid:19863544 DOI: https://doi.org/10.1111/j.1750-3639.2009.00339.x

Ullah I, Park HY, Kim M. Anthocyanins protect against kainic acid-induced excitotoxicity and apoptosis via ROS-activated AMPK pathwy in hipocampal neurons. CNS Neuroscience & Therapeutic. 2014; 20:327-38. https://doi.org/10.1111/cns.12218 PMid:24393263 DOI: https://doi.org/10.1111/cns.12218

Published

2019-01-14

How to Cite

1.
Adnyana IMO, Sudewi R, Samatra P, Suprapta S. Balinese Cultivar of Purple Sweet Potato Improved Neurological Score and BDNF and Reduced Caspase-Independent Apoptosis among Wistar Rats with Ischemic Stroke. Open Access Maced J Med Sci [Internet]. 2019 Jan. 14 [cited 2024 Mar. 28];7(1):38-44. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2019.019

Issue

Section

A - Basic Science

Most read articles by the same author(s)