Association between the Gut Microbiota and Obesity

Authors

  • Kiril Mitev Faculty of Medical Sciences, University "Goce Delchev", Shtip, Republic of Macedonia
  • Vaso Taleski Faculty of Medical Sciences, University “Goce Delchev”, Shtip, Republic of Macedonia

DOI:

https://doi.org/10.3889/oamjms.2019.586

Keywords:

gut, microbiota, association, obesity

Abstract

BACKGROUND: People co-evolved with members of the microbiota and developed, used and adapted many complex immune mechanisms, which are used for monitoring and control of the microbiota. The gut microbiota in cooperation with humans became its essential part, so-called "hidden organ" with many important and indispensable functions. Quantitative and/or qualitative deficiency of the gut microbiota (dysbiosis) probably is a basis of many disorders, including obesity.
AIM: To present an overview of the possible association between gut microbiota and obesity.
METHODS: Meta-analysis of available scientific and published data including PubMed, Web of Science, Scopus and Cochrane Library.
RESULTS: In the intestinal microbiota at obese people is detected a specific increase in the proportion between class Firmicutes and Bacteroidetes despite the non-obese people. Also, it is detected a decrease in this proportion if the person lost weight. These facts may be secondary to obesity. The colonisation of germ-free mice with microbiota from ordinarily feed or obese mice, without changes in the feed style leads to increase body fat to more than 50%.
CONCLUSION: The human gut microbiota directly affects the food digestion, absorption and metabolism. The gut microbiota of obese people has a higher capacity for receiving energy from the food than the microbiota at slim people. The gut microbiota affects appetite control and energy balance. Lifestyle and food regimen affect the diversity of the gut microbiota and the presence of dysbiosis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

De Clercq NC, Groen AK, Romijn JA, Nieuwdorp M. Gut Microbiota in Obesity and Undernutrition. The Advances in Nutrition journal. 2016; 15; 7(6):1080-1089. https://doi.org/10.3945/an.116.012914 PMid:28140325 PMCid:PMC5105041

Parekh PJ, Arusi E, Vinik AI, Johnson DA. The role and influence of gut microbiota in pathogenesis and management of obesity and metabolic syndrome. The Frontiers in endocrinology journal. 2014; 5:47. https://doi.org/10.3389/fendo.2014.00047 PMid:24778627 PMCid:PMC3984999

Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet induced obesity in germ-free mice.Proceedings of the National Academy of Sciences of the United States of America. 2007; 104(3):979-84. https://doi.org/10.1073/pnas.0605374104 PMid:17210919 PMCid:PMC1764762

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444(7122):1027-31. https://doi.org/10.1038/nature05414 PMid:17183312

Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semekovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013; 341(6150):1241214. https://doi.org/10.1126/science.1241214 PMid:24009397 PMCid:PMC3829625

Aagard K, Petrosino J, Keitel W, Watson M, Katancik J, Garcia N, Patel S, Cutting M, Madden T, Hamilton H, Harris E. The Human Microbiome project strategy for comprehensive sampling of the human microbiome and why it matters. The FASEB Journal. 2013; 27(3): 1012-22. https://doi.org/10.1096/fj.12-220806 PMid:23165986 PMCid:PMC3574278

Huttenhower C. et collaborators. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486(7402):207-14. https://doi.org/10.1038/nature11234 PMid:22699609 PMCid:PMC3564958

Methe BA, et collaborators. A framework for human microbiome research. Nature. 2012; 486(7402):215-21. https://doi.org/10.1038/nature11209 PMid:22699610 PMCid:PMC3377744

Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. The Gastroenterology journal. 2014; 146(6):1449-58. https://doi.org/10.1053/j.gastro.2014.01.052 PMid:24486050 PMCid:PMC4181834

Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, NyrÑn P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. The PloS One Journal. 2008; 3(7):e2836. https://doi.org/10.1371/journal.pone.0002836 PMid:18665274 PMCid:PMC2475661

Jameson JL, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J.Harrison's principles of Internal medicine 20th edition. The Human Microibiome: McGraw-Hill Education, 2018: 3379-3390.

Passos MDCF & Moraes-Filho JP. Intestinal microbiota in digestive diseases. The Arquivos de gastroenterologia. 2017; 54(3):255-262. https://doi.org/10.1590/s0004-2803.201700000-31 PMid:28723981

Fauci AS, Braunwald E, Kasper DL, Stephen LH, Longo DL, Jameson JL, Loscalzo J. Harrison's principles of internal medicine 17th edition: Biology of obesity. McGrawHill Medical. 2008; 462-468.

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature. 2009; 457(7228):480-4. https://doi.org/10.1038/nature07540 PMid:19043404 PMCid:PMC2677729

Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444(7122):1022-3. https://doi.org/10.1038/4441022a PMid:17183309

Sun L, Ma L, Ma Y, Zhang F, Zhao C, Nie Y. Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms and therapeutic perspectives. The Proetin&Cell journal. 2018; 9(5):397-403. https://doi.org/10.1007/s13238-018-0546-3 PMid:29725936 PMCid:PMC5960470

Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G. The gut microbiota suppresses insulin-mediated fat accumulation via short-chain fatty acid receptor GPR43. The Nature communications journal. 2013; 4:1829. https://doi.org/10.1038/ncomms2852 PMid:23652017 PMCid:PMC3674247

Nohr MK, Pedersen MH, Gille A, Egerol KL, Engelstoft MS, Husted AS, Sichlau RM, Grunddal KV, Poulsen SS, Han S, Jones RM, Offermanns S, Schwartz TW.GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. The Endocrinology journal. 2013; 154(10):3552-64. https://doi.org/10.1210/en.2013-1142 PMid:23885020

Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, Seed PC, Rawls JF, David LA, Huanault G, Oberti F, CalÑs P, Diehl AM. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. The Hepatology journal. 2016; 63(3):764-75. https://doi.org/10.1002/hep.28356 PMid:26600078 PMCid:PMC4975935

Breton J, Tennoune N, Lucas N, Francois M, Legrand R, Jacquemont J, Goichon A, GuÑrin C, Peltier J, Pestel-Caron M, Chan P, Vaudry D, do Rego JC, LiÑnard F, PÑnicaud L, Fioarmonti X, Ebenezer IS, HÓ§kfelt T, DÑchelotte P, Fetissov SO.Gut Commensal E.coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth.The Cell Metabolism journal. 2016; 23(2):324-34. https://doi.org/10.1016/j.cmet.2015.10.017 PMid:26621107

Queipo-OrtunËœo MI, Seoane LM, Murri M, Pardo M, Gomez-Zumaquero JM, Cardona F, Casanueva F, Tinahones FJ. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. The PloS one journal. 2013; 8(5):e65465. https://doi.org/10.1371/journal.pone.0065465 PMid:23724144 PMCid:PMC3665787

Blaser MJ. Hypothesis: the changing relationship of Helicobacter pylori and humans: implications for health and disease. The journal of infectious diseases. 1999; 179(6):1523-30. https://doi.org/10.1086/314785 PMid:10228075

Cho I, Yamanishi S, Cox L, MethÑ BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, Li H, Alekseyenko AV, Blaser MJ. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012; 488(7413):621-6. https://doi.org/10.1038/nature11400 PMid:22914093 PMCid:PMC3553221

Neish AS. Microbes in gastrointestinal health and disease. The Gastroenterology journal. 2009; 136(1):65-80. https://doi.org/10.1053/j.gastro.2008.10.080 PMid:19026645 PMCid:PMC2892787

Vulevic J, Juris A, Tzortzis G, Gibson GR. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. The Journal of nutrition. 2013; 143(3):324-31. https://doi.org/10.3945/jn.112.166132 PMid:23303873

Published

2019-06-29

How to Cite

1.
Mitev K, Taleski V. Association between the Gut Microbiota and Obesity. Open Access Maced J Med Sci [Internet]. 2019 Jun. 29 [cited 2022 Dec. 9];7(12):2050-6. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2019.586

Issue

Section

F - Review Articles

Similar Articles

You may also start an advanced similarity search for this article.