Hydro-implantation versus Visco-implantation of Intraocular Lenses and Fluid Load Effect on Corneal Endothelial Cells after Uneventful Phacoemulsification

Authors

  • Mohamed Mohamed-Aly Ibrahim Department of Ophthalmology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt https://orcid.org/0000-0001-9278-8752
  • Omar Hassan Salama Department of Ophthalmology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt https://orcid.org/0000-0002-9835-5429
  • Mahmoud Sofy Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
  • Sanaa Ahmed Mohamed Department of Ophthalmology, Al-Zahraa Hospital, Al-Azhar University, Cairo, Egypt https://orcid.org/0000-0001-9208-0279
  • Ahmed Gomaa Elmahdy Department of Ophthalmology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt

DOI:

https://doi.org/10.3889/oamjms.2022.10900

Keywords:

Corneal endothelium, Phacoemulsification, Implantation method, Fluidics

Abstract

AIM: The purpose of the study was to study the effect of implantation method and fluid load (aspiration time, aspiration volume) on corneal endothelium in uneventful phacoemulsification surgeries.

METHODS: This study was a prospective and interventional study involved 77 eyes, 50−81 years, divided into three groups according to implantation method (on Saline, Healon, or Methylcellulose). Specular microscope analysis of corneal endothelial parameters: Cell density (CD), central corneal thickness (CCT), coefficient of variation (CV), and Hexagonality (HEX) were done before and 3 months after surgery.

RESULTS: A total of 77 eyes with cataracts were studied, and there was a significant increase in CCT and CV with a decrease in CD and HEX in all three groups. On comparing the same parameters between the three groups, there were insignificant differences regarding CCT and HEX changes. Although there was a significant change in CD, the highest loss was in the Healon group (median −0.138), followed by the Saline group (median −0.118), and the lowest was in the Methyl group (median −0.075). There was a significant change in CV, showing the highest increase in the Healon group (median 0.16129) followed by the Saline group (median 0.13307) and the lowest in the Methyl group (median 0.1266). There was a non-significant change in all corneal parameters among cases in each group with different aspiration volumes and times.

CONCLUSION: Endothelial cell loss was lowest with Methyl followed by saline, and highest with Healon implantation. Fluidics had an insignificant effect in the three groups. Saline implantation was comparable to Healon, with an insignificant difference in CD loss.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Borroni D, Gadhvi K, Wojcik G, Pennisi F, Vallabh NA, Galeone A, et al. The influence of speed during stripping in descemet membrane endothelial keratoplasty tissue preparation. Cornea. 2020;39(9):1086-90. https://doi.org/10.1097/ICO.0000000000002338 PMid:32301812

Kiss B, Findl O, Menapace R, Petternel V, Wirtitsch M, Lorang T, et al. Corneal endothelial cell protection with a dispersive viscoelastic material and an irrigating solution during phacoemulsification: Low-cost versus expensive combination. J Cataract Refract Surg. 2003;29(4):733-40. https://doi.org/10.1016/s0886-3350(02)01745-5 PMid:12686241

Borroni D, de Lossada CR, Parekh M, Gadhvi K, Bonzano C, Romano V, et al. Tips, tricks, and guides in descemet membrane endothelial keratoplasty learning curve. J Ophthalmol. 2021;2021:1819454. https://doi.org/10.1155/2021/1819454 PMid:34447591

Hwang HB, Lyu B, Yim HB, Lee NY. Endothelial cell loss after phacoemulsification according to different anterior chamber depths. J Ophthalmol. 2015;2015:210716. https://doi.org/10.1155/2015/210716 PMid:26417452

Teichmann J, Valtink M, Nitschke M, Gramm S, Funk RH, Engelmann K, et al. Tissue engineering of the corneal endothelium: A review of carrier materials. J Funct Biomater. 2013;4(4):178-208. https://doi.org/10.3390/jfb4040178 PMid:24956190

Fine IH, Packer M, Hoffman RS. New phacoemulsification technologies. J Cataract Refract Surg. 2002;28(6):1054-60. https://doi.org/10.1016/s0886-3350(02)01399-8 PMid:12036654

Mackool RJ, Brint SF. AquaLase: A new technology for cataract extraction. Curr Opin Ophthalmol. 2004;15(1):40-3. https://doi.org/10.1097/00055735-200402000-00008 PMid:14743018

Rose AD, Kanade V. Thermal imaging study comparing phacoemulsification with the sovereign with whitestar system to the legacy with advantec and neosonix system. Am J Ophthalmol. 2006;141(2):322-6. https://doi.org/10.1016/j.ajo.2005.09.023 PMid:16458688

Ward MS, Georgescu D, Olson RJ. Effect of bottle height and aspiration rate on postocclusion surge in infiniti and millennium peristaltic phacoemulsification machines. J Cataract Refractive Surg. 2008;34(8):1400-2. https://doi.org/10.1016/j.jcrs.2008.04.042 PMid:18655995

Wade M, Isom R, Georgescu D, Olson RJ. Efficacy of cruise control in controlling postocclusion surge with legacy and millennium venturi phacoemulsification machines. J Cataract Refractive Surg. 2007;33(6):1071-5. https://doi.org/10.1016/j.jcrs.2007.02.028 PMid:17531704

Rocha-de-Lossada C, Rachwani-Anil R, Borroni D, Sanchez- Gonzalez JM, Esteves-Marques R, Soler-Ferrandez FL, et al. New horizons in the treatment of corneal endothelial dysfunction. J Ophthalmol. 2021;2021:6644114. https://doi.org/10.1155/2021/6644114 PMid:34306743

Praveen MR, Koul A, Vasavada AR, Pandita D, Dixit NV, Dahodwala FF. DisCoVisc versus the soft-shell technique using viscoat and provisc in phacoemulsification: Randomized clinical trial. J Cataract Refract Surg. 2008;34(7):1145-51. https://doi.org/10.1016/j.jcrs.2008.03.019 PMid:18571083

Polack FM, Sugar A. The phacoemulsification procedure. II. Corneal endothelial changes. Invest Ophthalmol. 1976;15(6):458-69. PMid:931690

Binder PS, Sternberg H, Wickman M, Worthen DM. Corneal endothelial damage associated with phacoemulsification. Am J Ophthalmol. 1976;82(1):48-54. https://doi.org/10.1016/0002-9394(76)90663-2 PMid:937457

Díaz-Valle D, Sánchez JM, Castillo A, Sayagués O, Moriche M. Endothelial damage with cataract surgery techniques. J Cataract Refract Surg. 1998;24(7):951-5. https://doi.org/10.1016/s0886-3350(98)80049-7 PMid:9682116

Ventura AS, Wälti R, Böhnke M. Corneal thickness and endothelial density before and after cataract surgery. Br J Ophthalmol. 2001;85(1):18-20. https://doi.org/10.1136/bjo.85.1.18 PMid:11133705

Vargas LG, Holzer MP, Solomon KD, Sandoval HP, Auffarth GU, Apple DJ. Endothelial cell integrity after phacoemulsification with 2 different handpieces. J Cataract Refract Surg. 2004;30(2):478- 82. https://doi.org/10.1016/S0886-3350(03)00620-5 PMid:15030845

Hayashi K, Hayashi H, Nakao F, Hayashi F. Risk factors for corneal endothelial injury during phacoemulsification. J Cataract Refract Surg. 1996;22(8):1079-84. https://doi.org/10.1016/s0886-3350(96)80121-0 PMid:8915805

Verges C, Cazal J, Lavin C. Surgical strategies in patients with cataract and glaucoma. Curr Opin Ophthalmol. 2005;16(1):44-52. https://doi.org/10.1097/00055735-200502000-00008 PMid:15650579

Baradaran-Rafii A, Rahmati-Kamel M, Eslani M, Kiavash V, Karimian F. Effect of hydrodynamic parameters on corneal endothelial cell loss after phacoemulsification. J Cataract Refract Surg. 2009;35(4):732-7. https://doi.org/10.1016/j.jcrs.2008.12.017 PMid:19304097

Agha M, Abbas M, Sofy M, Haroun S, Mowafy A. Dual inoculation of Bradyrhizobium and Enterobacter alleviates the adverse effect of salinity on Glycine max seedling. Not Bota Horti Agro Cluj-Nap. 2021;49(3):12461. https://doi.org/10.15835/nbha49312461

Maksoud M, Bekhit M, El-Sherif D, Sofy A, Sofy M. Gamma radiation induced synthesis of a novel chitosan/silver/Mn Mg ferrite nanocomposite and its impact on cadmium accumulation and translocation in brassica plant growth. Int J Biolo Macromol. 2022;194,306-316. https://doi.org/10.15835/nbha49312461

Craig MT, Olson RJ, Mamalis N, Olson RJ. Air bubble endothelial damage during phacoemulsification in human eye bank eyes: The protective effects of healon and viscoat. J Cataract Refract Surg. 1990;16(5):597-602. https://doi.org/10.1016/s0886-3350(13)80777-8 PMid:2231377

Monson MC, Tamura M, Mamalis N, Olson RJ, Olson RJ. Protective effects of healon and occucoat against air bubble endothelial damage during ultrasonic agitation of the anterior chamber. J Cataract Refract Surg. 1991;17(5):613-6. https://doi.org/10.1016/S0886-3350(13)81050-4

Arshinoff SA, Jafari M. New classification of ophthalmic viscosurgical devices--2005. J Cataract Refract Surg. 2005;31(11):2167-71. https://doi.org/10.1016/j.jcrs.2005.08.056 PMid:16412934

Petroll WM, Jafari M, Lane SS, Jester JV, Cavanagh HD. Quantitative assessment of ophthalmic viscosurgical device retention using in vivo confocal microscopy. J Cataract Refract Surg. 2005;31(12):2363-8. https://doi.org/10.1016/j.jcrs.2005.05.032 PMid:16473232

Bissen-Miyajima H. In vitro behavior of ophthalmic viscosurgical devices during phacoemulsification. J Cataract Refract Surg. 2006;32(6):1026-31. https://doi.org/10.1016/j.jcrs.2006.02.039 PMid:16814065

Storr‐Paulsen A, Nørregaard JC, Farik G, Tårnhøj J. The influence of viscoelastic substances on the corneal endothelial cell population during cataract surgery: A prospective study of cohesive and dispersive viscoelastics. Acta Ophthalmol Scand. 2007;85(2):183-7. https://doi.org/10.1111/j.1600-0420.2006.00784.x PMid:17305732

Beiko GH. Endothelial cell loss after cataract phacoemulsification with healon5 vs. I-Visc phaco. Can J Ophthalmol. 2003;38(1):52-6. https://doi.org/10.1016/s0008-4182(03)80009-1 PMid:12608518

Holzer MP, Tetz MR, Auffarth GU, Welt R, Völcker HE. Effect of healon5 and 4 other viscoelastic substances on intraocular pressure and endothelium after cataract surgery. J Cataract Refract Surg. 2001;27(2):213-8. https://doi.org/10.1016/s0886-3350(00)00568-x PMid:11226784

Studeny P, Hyndrak M, Kacerovsky M, Mojzis P, Sivekova D, Kuchynka P. Safety of hydroimplantation: A foldable intraocular lens implantation without the use of an ophthalmic viscosurgical device. Eur J Ophthalmol. 2014;24(6):850-6. https://doi.org/10.5301/ejo.5000491 PMid:24846622

Tak H. Hydroimplantation: Foldable intraocular lens implantation without an ophthalmic viscosurgical device. J Cataract Refract Surg. 2010;36(3):377-9. https://doi.org/10.1016/j.jcrs.2009.10.042 PMid:20202532

Landesz M, Worst JG, Siertsema JV, van Rij G. Correction of high myopia with the worst myopia claw intraocular lens. Vol. 11. In: Correction of High Myopia with the Worst Myopia Claw Intraocular Lens. Thorofare, NJ: SLACK Incorporated; 1995. p. 16-67.

Oğurel T, Oğurel R, Onaran Z, Örnek K. Safety of hydroimplantation in cataract surgery in patients with pseudoexfoliation syndrome. Int J Ophthalmol. 2017;10(5):723-7. https://doi.org/10.18240/ijo.2017.05.10 PMid:28546927

Lee HY, Choy YJ, Park JS. Comparison of OVD and BSS for maintaining the anterior chamber during IOL implantation. Korean J Ophthalmol. 2011;25(1):15-21. https://doi.org/10.3341/kjo.2011.25.1.15 PMid:21350689

Miyake K, Ota I, Ichihashi S, Miyake S, Tanaka Y, Terasaki H. New classification of capsular block syndrome. J Cataract Refract Surg. 1998;24(9):1230-4. https://doi.org/10.1016/ s0886-3350(98)80017-5 PMid:9768398

Sugiura T, Miyauchi S, Eguchi S, Obata H, Nanba H, Fujino Y, et al. Analysis of liquid accumulated in the distended capsular bag in early postoperative capsular block syndrome. J Cataract Refract Surg. 2000;26(3):420-5. https://doi.org/10.1016/s0886-3350(99)00430-7 PMid:10713240

Sim BW, Amjadi S, Singh R, Bhardwaj G, Dubey R, Francis IC. Assessment of adequate removal of ophthalmic viscoelastic device with irrigation/aspiration by quantifying intraocular lens ‘judders’. Clin Exp Ophthalmol. 2013;41(5):450-4. https://doi.org/10.1111/ceo.12024 PMid:23078284

Apple DJ, Peng Q, Visessook N, Werner L, Pandey SK, Escobar-Gomez M, et al. Eradication of posterior capsule opacification: Documentation of a marked decrease in Nd: YAG laser posterior capsulotomy rates noted in an analysis of 5416 pseudophakic human eyes obtained postmortem. Ophthalmology. 2020;127(4S):S29-42. https://doi.org/10.1016/j.ophtha.2020.01.026 PMid:32200823

Downloads

Published

2022-11-04

How to Cite

1.
Ibrahim MM-A, Salama OH, Sofy M, Mohamed SA, Elmahdy AG. Hydro-implantation versus Visco-implantation of Intraocular Lenses and Fluid Load Effect on Corneal Endothelial Cells after Uneventful Phacoemulsification. Open Access Maced J Med Sci [Internet]. 2022 Nov. 4 [cited 2024 Apr. 25];10(B):2573-80. Available from: https://oamjms.eu/index.php/mjms/article/view/10900

Most read articles by the same author(s)