Correlation between HbA1c and Triglyceride Level with Coronary Stenosis Degree in Type 2 Diabetes Mellitus with Coronary Heart Disease

Authors

  • Laily Adninta Department of Clinical Pathology, Columbia Asia Hospital, Semarang, Central Java, Indonesia
  • Indranila Samsuria Department of Clinical Pathology, Faculty of Medicine, Diponegoro University, Semarang, Central Java, Indonesia
  • Edward Kurnia Setiawan Limijadi Department of Clinical Pathology, Faculty of Medicine, Diponegoro University, Semarang, Central Java, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.8859

Keywords:

HbA1c, Triglycerides, Coronary stenosis, Type 2 DM with CHD

Abstract

BACKGROUND: The mortality of coronary heart disease (CHD) in type 2 diabetes mellitus (DM) increased 2–4 times more than non-diabetics because of coronary stenosis. One of the risk factors for CHD in type 2 DM is dyslipidemia. Hypertriglyceridemia plays an important role in atherosclerosis coronary arteries theoretically.

AIM: This study analyzed the parameters of HbA1c and triglyceride levels with the stenosis severity of coronary artery that occurs in type 2 DM patients with CHD that has not been analyzed so far.

METHODS: This study was a cross-sectional observational analytic study. Forty patients of type 2 DM with CHD in Kariadi Hospital on September 2013 were recruited based on the inclusion and exclusion criteria. HbA1c level in plasma was measured by turbidimetric immunoassay method. Triglyceride level was measured by enzymatic methods. Coronary stenosis was based on coronary angiography result as percentage. Spearman correlation test was used and p < 0.05 was considered statistically significant.

RESULTS: Mean HbA1c and triglyceride levels were 8.89 ± 1.498 % and 220.97 ± 92.24 mg/dL. The correlation test between HbA1c and triglycerides (TG) level with coronary stenosis, respectively, was p <0.001, r = 0.665; p = 0.001, r = 0.501. In addition, correlation between HbA1c and TG was p = 0.002, r = 0.466.

CONCLUSION: HbA1c and triglyceride levels increase in line with the increasing stenosis severity of coronary heart disease in patients with type 2 DM.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes – Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. 2020; 10(1): 107–111. DOI: https://doi.org/10.2991/jegh.k.191028.001

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35 Suppl 1:S64-71. https://doi.org/10.2337/dc12-s064 PMid:22187472 DOI: https://doi.org/10.2337/dc12-s064

Association of Indonesian Endocrinologist (PERKENI). Diabetes Mellitus, Guideline of Management and Prevention of Type 2 DM in Indonesia. Jakarta: Association of Indonesian Endocrinologist (PERKENI); 2006.

Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4-14. https://doi.org/10.1016/j.diabres.2009.10.007 PMid:19896746 DOI: https://doi.org/10.1016/j.diabres.2009.10.007

Sylvia PA. Glucose Metabolism and Diabetes Melitus, Pathophysiology. 6th ed., Vol. 2. Jakarta: EGC; 2006. p. 1260-65.

Stephen MJ, Ganong WF. Disorders of the Endocrine Pancreas, Pathophysiology of Disease. 5th ed. USA: Lange; 2006. p. 521-2.

Adam John MF. Reducing cardiovascular risk. In: Type 2 Diabetes from the Lipidologist View, Textbook of Diabetes and Related Disorders. Makassar: Perkeni; 2004. p. 1-2.

Einarson TR, Annabel, Ludwig C, Panton UH. Prevalence of Cardiovascular Disease in Type 2 Diabetes: A Systematic Literature Review of Scientific Evidence from Across The World in 2007–2017. Cardiovasc Diabetol. 2018; 17: 83. DOI: https://doi.org/10.1186/s12933-018-0728-6

Su G, Mi S, Tao H, Li Z, Yang H, Zheng H, et al. Association of glycemic variability and the presence and severity of coronary artery disease in patients with type 2 diabetes. Cardiovasc Diabetol. 2011;10:19. https://doi.org/10.1186/1475-2840-10-19 PMid:21349201 DOI: https://doi.org/10.1186/1475-2840-10-19

Raghavan S, Vassy JL, Lam HY, Song RJ, Gagnon DR, Cho K, et al. Diabetes Mellitus–Related All-Cause and Cardiovascular Mortality in a National Cohort of Adults. J Am. Heart Assoc. 2019;8:e011295. DOI: https://doi.org/10.1161/JAHA.118.011295

Lily IR. Coronary heart disease. In: Cardiovascular Disease. Jakarta; Publishing Center of Medical Faculty of University of Indonesia; 2012. p. 119-223.

Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111(25):3481-8. https://doi.org/10.1161/CIRCULATIONAHA.105.537878 PMId:15983262 DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.537878

Insull W Jr. The pathology of atherosclerosis: Plaque development and plaque responses to medical treatment. Am J Med. 2009;122 Suppl 1:S3-14. https://doi.org/10.1016/j.amjmed.2008.10.013 PMid:19110086 DOI: https://doi.org/10.1016/j.amjmed.2008.10.013

Taskinen MR. Diabetic dyslipidemia: From basic research to clinical practice. Diabetologia. 2003;46(6):733-49. https://doi.org/10.1007/s00125-003-1111-y PMid:12774165 DOI: https://doi.org/10.1007/s00125-003-1111-y

Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest. 2000;106:453-8. https://doi.org/10.1172/JCI10762 PMid:10953019 DOI: https://doi.org/10.1172/JCI10762

Sungkar MA. Triglycerides: A independent risk factor of coronary heart disease. In: Sutikno T, Sodiqur R, editors. Atherosclerosis. Semarang: Diponegoro University; 2003. p. 37-42.

Parhofer KG. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia. Diabetes Metab J 2015;39:353-362. DOI: https://doi.org/10.4093/dmj.2015.39.5.353

Lee EJ, Kim YJ, Kim TN, Kim TI, Lee WK, Kim M, et al. A1c variability can predict coronary artery disease in patients with type 2 diabetes with mean A1c levels greater than 7. Endocrinol Metab. 2013;28(2):125-32. https://doi.org/10.3803/enm.2013.28.4.348 PMid:24396666 DOI: https://doi.org/10.3803/EnM.2013.28.2.125

Habib SS. Serum lipoprotein(a) and high sensitivity C reactive protein levels in Saudi patients with type 2 diabetes mellitus and their relationship with glycemic control. Turk J Med Sci 2013;43:333-8.

Ertem AG, Bagbanci H, Kilic H, Yeter E, Akdemir R. Relationship between HbA1c levels and coronary artery severity in nondiabetic acute coronary syndrome patients. Turk Kardiyol Dern Ars. 2013;41(5):389-95. https://doi.org/10.1016/s0167-5273(13)70394-2 PMid:23917003 DOI: https://doi.org/10.5543/tkda.2013.95666

Yan Z, Liu Y, Huang H. Association of glycosylated hemoglobin level with lipid ratio and individual lipids in type 2 diabetic patients. Asian Pac J Trop Med. 2012;5(6):469-71. https://doi.org/10.1016/s1995-7645(12)60080-7 PMid:22575980 DOI: https://doi.org/10.1016/S1995-7645(12)60080-7

Petitti DB, Imperatore G, Palla SL, Daniel SR, Dolan LM, Kershnar AK, et al. Serum lipids and glucose control. Arch Pediart Adolesc Med. 2007;161:159-65. https://doi.org/10.1001/archpedi.161.2.159 PMid:17283301 DOI: https://doi.org/10.1001/archpedi.161.2.159

Saleem T, Mohammad KH, Abdel-Fattah MM, Abbasi AH. Association of glycosylated haemoglobin level and diabetes mellitus duration with the severity of coronary artery disease. Diabetes Vasc Dis Res. 2008;5(3):184-9. https://doi.org/10.3132/dvdr.2008.030 PMid:18777491 DOI: https://doi.org/10.3132/dvdr.2008.030

Rivera JJ, Choi EK, Yoon YE, Chun EJ, Choi S, Nasir K, et al. Association between increasing levels of hemoglobin A1c and coronary atherosclerosis in asymptomatic individuals without diabetes mellitus. Coron Artery Dis. 2010;21(3):157-63. https://doi.org/10.1097/mca.0b013e328337ff9b PMid:20308881 DOI: https://doi.org/10.1097/MCA.0b013e328337ff9b

Huo ZQ, Li HL, Gao L, Pan L, Zhao JJ, Li GW. Involvement of chronic stresses in rat islet and INS-1 cell glucotoxicity induced by intermittent high glucose. Mol Cell Endrocinol. 2008;291(1-2):71-8. https://doi.org/10.1016/j.mce.2008.03.004 PMid:18485584 DOI: https://doi.org/10.1016/j.mce.2008.03.004

Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes. 2003;52(11):2795-804. https://doi.org/10.2337/diabetes.52.11.2795 PMid:14578299 DOI: https://doi.org/10.2337/diabetes.52.11.2795

Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57(5):1349-54. https://doi.org/10.2337/db08-0063 PMid:18299315 DOI: https://doi.org/10.2337/db08-0063

Kim MK, Jung HS, Yoon CS, Ko JH, Jun HJ, Kim TK, et al. The effect of glucose fluctuation on apoptosis and function of INS-1 pancreatic beta cells. Korean diabetes J. 2010;34(1):47-54. https://doi.org/10.4093/kdj.2010.34.1.47 PMid:20532020 DOI: https://doi.org/10.4093/kdj.2010.34.1.47

Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681-7. https://doi.org/10.1001/jama.295.14.1681 PMid:16609090 DOI: https://doi.org/10.1001/jama.295.14.1681

Ginsberg HN. Hypertriglyceridemia: New insight and new approaches to pharmacologic therapy. Am J Cardiol. 2001;87(10):1174-80. https://doi.org/10.1016/s0002-9149(01)01489-8 PMid:11356393 DOI: https://doi.org/10.1016/S0002-9149(01)01489-8

Eckel RH. The metabolic syndrome. In: Jameson JL, editor. Harrison’s Endocrinology 2nd ed. Lancet: The McGraw-Hill Companies; 2010.

Sena CM , Pereira AM, Seiça R. Endothelial dysfunction - A Major Mediator Of Diabetic Vascular Disease. Biochimica et Biophysica Acta. 2013; 1832: 2216–2231. DOI: https://doi.org/10.1016/j.bbadis.2013.08.006

Cullen P. Evidence that tryglycerides are an independent coronary heart disease risk factor. Am J Cardiol. 2000;86(9):943-9. https://doi.org/10.1016/s0002-9149(00)01127-9 PMid:11053704 DOI: https://doi.org/10.1016/S0002-9149(00)01127-9

Gianturco SH, Bradley A. Pathophysiology of tryglyceride – Rich lipoprotein in atherothrombosis: Cellular aspect. Clin Cardiol. 1999;22 Suppl 6:II7-14. https://doi.org/10.1002/clc.4960221403 PMid:10376191 DOI: https://doi.org/10.1002/clc.4960221403

Kohler HP, Grand PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med. 2000;342(24):1792-801. https://doi.org/10.1056/nejm200006153422406 PMid:10853003 DOI: https://doi.org/10.1056/NEJM200006153422406

Downloads

Published

2022-04-29

How to Cite

1.
Adninta L, Samsuria I, Limijadi EKS. Correlation between HbA1c and Triglyceride Level with Coronary Stenosis Degree in Type 2 Diabetes Mellitus with Coronary Heart Disease. Open Access Maced J Med Sci [Internet]. 2022 Apr. 29 [cited 2023 Feb. 4];10(B):944-8. Available from: https://oamjms.eu/index.php/mjms/article/view/8859

Most read articles by the same author(s)