The Hidden Function of Vitamin D

Authors

  • Hiba Mohamed Riad Sibaii Medical Physiology Department, National Research Centre, Medical Division, 33 El-Bohouth Street, Dokki, POB:12311, Cairo http://orcid.org/0000-0002-0414-0567
  • Salwa Refat El-Zayat Medical Physiology Department, National Research Centre, Medical Division, 33 El-Bohouth Street, Dokki, POB:12311, Cairo
  • Azza Abd El-Shaheed Child Health Department, National Research Centre, Medical Division, 33 El-Bohouth Street, Dokki, POB:12311, Cairo
  • Nermine N. Mahfouz Child Health Department, National Research Centre, Medical Division, 33 El-Bohouth Street, Dokki, POB:12311, Cairo
  • Sara F. Sallam Child Health Department, National Research Centre, Medical Division, 33 El-Bohouth Street, Dokki, POB:12311, Cairo
  • Marwa H. El Azma Medical Physiology Department, National Research Centre, Medical Division, 33 El-Bohouth Street, Dokki, POB:12311, Cairo

DOI:

https://doi.org/10.3889/oamjms.2016.134

Keywords:

Vitamin D, thymosin beta-4, immunity

Abstract

AIM: There are no reports regarding the influence of vitamin D on thymosin ß4 and the cluster of differentiation CD4 levels which are important for maintaining a healthy immune system. Consequently, we aimed to explore this relationship through a study.

MATERIAL AND METHODS: The study was carried out on 35 subjects, screened for 25-hydroxy vitamin D[25 (OH) D] using ELISA method and they were divided into two groups: Group 1 consists of 10 healthy subjects with sufficient vit. D level > 24.8 ng/ml. Group 2 consists of 25 subjects suffering, severely, from vitamin D deficiency at level < 11.325 ng/ml. Also, Thymosin ß4, CD4 and zinc levels were performed.

RESULTS: There were significant differences between the two groups in the concentration levels of thymosin β4, as the group 1 has shown higher levels (P = 0.005). Whereas, CD4 and zinc levels didn’t show any significant difference between the two groups. At the same time, a significant positive correlation has been observed between vitamin D, thymosin β4, and CD4 at (r = 0.719; P = 0.001), and (r = 0.559, P = 0.001) respectively.

CONCLUSION: We concluded that vitamin D may be an essential factor that influence or determine the level of thymosin β4. This study is the first that focused on demonstrating that sufficient level of vitamin D may have the ability to influence the thymic hormone thymosin β4 levels. Further studies on large scale of subjects are needed to explore the positive correlation we had found between vitamin D and thymosin β4 and CD4.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Battault S, Whiting SJ, Peltier SL, Sadrin S, Gerber G, Maixent JM. Vitamin D metabolism, functions and needs: From science to health claims. Eur J Nutr. 2013;52:429–441. https:/doi.org/10.1007/s00394-012-0430-5 PMid:22886046 DOI: https://doi.org/10.1007/s00394-012-0430-5

Antico A, Tampoia M, Tozzoli R, Bizzaro N. Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev. 2012;12:127–136. https:/doi.org/10.1016/j.autrev.2012.07.007 PMid:22776787 DOI: https://doi.org/10.1016/j.autrev.2012.07.007

Wei R, Christakos S. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D. Nutrients. 2015;7: 8251-8260. https:/doi.org/10.3390/nu7105392 PMid:26404359 PMCid:PMC4632412 DOI: https://doi.org/10.3390/nu7105392

Aranow C. Vitamin D and the immune system. J Investig Med. 2011; 59:881–886. https:/doi.org/10.2310/JIM.0b013e31821b8755 PMid:21527855 PMCid:PMC3166406 DOI: https://doi.org/10.2310/JIM.0b013e31821b8755

Ben-Zvi I, Aranow C, Mackay M, Stanevsky A, Kamen DL, et al. The impact of vitamin D on dendritic cell function in patients with systemic lupus erythematosus. PLoS One. 2010; 5: e9193. https:/doi.org/10.1371/journal.pone.0009193 PMid:20169063 PMCid:PMC2821911 DOI: https://doi.org/10.1371/journal.pone.0009193

Lerman M, Burnham J, Behrens E. 1,25 dihydroxyvitamin D3 limits monocyte maturation in lupus sera. Lupus. 2011;20:749–753. https:/doi.org/10.1177/0961203310394542 PMid:21447602 DOI: https://doi.org/10.1177/0961203310394542

Tripkovic L, Lambert H, Hart K, Smith CP, Bucca G, Penson S, Chope G, Hyppönen E, Berry J, Vieth R, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am J Clin Nutr. 2012;95:1357–1364. https:/doi.org/10.3945/ajcn.111.031070 PMid:22552031 PMCid:PMC3349454 DOI: https://doi.org/10.3945/ajcn.111.031070

Landuyt B, Schoofs L, Luyten W, Arckens L. Thymosin beta 4 mRNA and peptide expression in phagocytic cells of different mouse tissues. Peptides. 2009; 30:1822–1832. https:/doi.org/10.1016/j.peptides.2009.07.010 PMid:19631707 DOI: https://doi.org/10.1016/j.peptides.2009.07.010

Huff T, Müller CS, Otto AM, Netzker R, Hannappel E. beta-Thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol. 2001; 33: 205–220. https:/doi.org/10.1016/S1357-2725(00)00087-X DOI: https://doi.org/10.1016/S1357-2725(00)00087-X

Hannappel E, Xu GJ, Morgan J, Hempstead J, Horecker BL. Thymosin beta 4: a ubiquitous peptide in rat and mouse tissues. Proc Natl AcadSci U S A. 1982; 79:2172–2175. https:/doi.org/10.1073/pnas.79.7.2172 DOI: https://doi.org/10.1073/pnas.79.7.2172

Bubb MR. Thymosin beta 4 interactions. Vitamins and hormones. 2003; 66: 297–316. https:/doi.org/10.1016/S0083-6729(03)01008-2 DOI: https://doi.org/10.1016/S0083-6729(03)01008-2

Piludu M, Piras M, Pichiri G, Coni P, Orrù G, Cabras T, Messana I, Faa G, Castagnola M.: Thymosin Beta 4 May Translocate from the Cytoplasm in to the Nucleus in HepG2 Cells following Serum Starvation. An Ultrastructural Study. PLoS One. 2015; 10(4): e0119642. https:/doi.org/10.1371/journal.pone.0119642 PMid:25835495 PMCid:PMC4383617 DOI: https://doi.org/10.1371/journal.pone.0119642

Xu TJ, Wang Q, Ma XW, Zhang Z, ZhangW, XueXC,Cun Zhang C, Hao Q, Li WN, ZhangYQ, Li M. A novel dimeric thymosin beta 4 with enhanced activities accelerates the rate of wound healing. Drug Des Devel Ther. 2013; 7:1075–1088. PMid:24109178 PMCid:PMC3792846 DOI: https://doi.org/10.2147/DDDT.S50183

Górski A, Korczak-Kowalska G, Nowaczyk M, Gaciong Z, and E Skopińska-Rózewska E. Thymosin: an immunomodulator of antibody production in man. Immunology.1982; 47(3):497–501. PMid:6215339 PMCid:PMC1555552

Goldstein AL. History of the discovery of the thymosins. Ann N Y Acad Sci. 2007;1112:1-13. https:/doi.org/10.1196/annals.1415.045 PMid:17600284 DOI: https://doi.org/10.1196/annals.1415.045

Goldstein AL, Hannappel E, Sosne G, Kleinman HK. Thymosin β4: a multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther. 2012 ; 12(1):37-51. https:/doi.org/10.1517/14712598.2012.634793 PMid:22074294 DOI: https://doi.org/10.1517/14712598.2012.634793

Bock-Marquette I, Saxena A, White MD, DiMaio JM, Srivasta D. Thymosin beta 4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature. 2004;432: 466–472. https:/doi.org/10.1038/nature03000 PMid:15565145 DOI: https://doi.org/10.1038/nature03000

Freeman KW, Bowman BR, Zetter BR. Regenerative protein thymosin-4 is a novel regulator of purinergic signaling. FASEB J. 2011; 25, 907–915. https:/doi.org/10.1096/fj.10-169417 PMid:21106936 DOI: https://doi.org/10.1096/fj.10-169417

Rath NC, Kannan L, Liyanage R, Lay JrJO. Thymosin beta in macrophage J Endocrinol Reprod. 2007;2: 55 - 61.

Ballweber E, Hannappel E, Huff T, Stephan H, Haener M, Taschner N et al. Polymerisation of chemically cross-linked actin: thymosin beta(4) complex to filamentous actin: alteration in helical parameters and visualisation of thymosin beta(4) binding on F-actin. J Mol Biol. 2002; 315: 613–625. https:/doi.org/10.1006/jmbi.2001.5281 PMid:11812134 DOI: https://doi.org/10.1006/jmbi.2001.5281

Wang M, He HJ, Turko IV, Phinney KW, Wang L. Quantifying the cluster of differentiation 4 receptor density on human T lymphocytes using multiple reaction monitoring mass spectrometry. Anal Chem. 2013 ;85(3):1773-7. https:/doi.org/10.1021/ac3031306 PMid:23286534 DOI: https://doi.org/10.1021/ac3031306

Ansari-Lari MA, Muzny DM, Lu J, Lu F, Lilley CE, Spanos S, Malley T, Gibbs RA. A gene-rich cluster between the CD4 and triosephosphate isomerase genes at human chromosome 12p13. Genome Res. 1996; 6(4):314-26. https:/doi.org/10.1101/gr.6.4.314 PMid:8723724 DOI: https://doi.org/10.1101/gr.6.4.314

Rink L, Gabriel P. Zinc and the immune system. Proc Nutr Soc. 2000; 59(4):541-52. https:/doi.org/10.1017/S0029665100000781 PMid:11115789 DOI: https://doi.org/10.1017/S0029665100000781

Maares M, Haase H. Zinc and immunity: An essential interrelation. Arch Biochem Biophys. 2016. pii: S0003-9861(16)30074-1.

Barnett JB, Dao M.C, Hamer DH, Kandel R, Brandeis G, Wu D, Dallal GE, Jacques PF, Schreiber R, Kong E, Meydani SN. Effect of zinc supplementation on serum zinc concentration and T cell proliferation in nursing home elderly: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2016;103(3):942-51. https:/doi.org/10.3945/ajcn.115.115188 PMid:26817502 DOI: https://doi.org/10.3945/ajcn.115.115188

Committee to Review Dietary Reference Intakes for Vitam D and Calcium IoM Dietary Reference Intakes for Calcium and Vitamin D Washington, D.C.: The National Academies Press, 2011:1–1116.

Andersen R, Brot C, Jakobsen J, Mejborn H, Mølgaard C, Skovgaard LT, Trolle E, Tetens I, Ovesen L. Seasonal changes in vitamin D status among Danish adolescent girls and elderly women: The influence of sun exposure and vitamin D intake. Eur J Clin Nutr. 2013;67:270–274. https:/doi.org/10.1038/ejcn.2013.3 PMid:23388663 DOI: https://doi.org/10.1038/ejcn.2013.3

Pittaway JK, Ahuja KDK, Beckett JM, Bird M-L, Robertson IK, Ball MJ. Make vitamin D while the sun shines, take supplements when it doesn't: A longitudinal, observational study of older adults in Tasmania, Australia. PLoS One. 2013;8:e59063. https:/doi.org/10.1371/journal.pone.0059063 PMid:23527088 PMCid:PMC3601102 DOI: https://doi.org/10.1371/journal.pone.0059063

Ross AC, Taylor CL, Yaktine AL, Valle HBD. Dietary Reference Intakes for Calcium and Vitamin D Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Washington (DC): National Academies Press (US), 2011.

Bikle DD. Vitamin D Metabolism, Mechanism of Action, and Clinical applications. Chemistry & Biology. 2014; 21(3) : 319–329. https:/doi.org/10.1016/j.chembiol.2013.12.016 PMid:24529992 PMCid:PMC3968073 DOI: https://doi.org/10.1016/j.chembiol.2013.12.016

Wu-Wong JR, Nakane M, Ma J, Dixon D, Gagne G Vitamin D receptor (VDR) localization in human promyelocytic leukemia cells Leuk Lymphoma. 2006;47(4):727-32. https:/doi.org/10.1080/10428190500398898 PMid:16690532 DOI: https://doi.org/10.1080/10428190500398898

Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC. 1,25-Dihydroxyvitamin D3 receptors in human leukocytes. Science. 1983;221:1181–1183. https:/doi.org/10.1126/science.6310748 PMid:6310748 DOI: https://doi.org/10.1126/science.6310748

Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179:1634–1647. https:/doi.org/10.4049/jimmunol.179.3.1634 PMid:17641030 DOI: https://doi.org/10.4049/jimmunol.179.3.1634

Mahon BD, Wittke A, Weaver V, Cantorna MT. The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells. J Cell Biochem. 2003;89:922–932. https:/doi.org/10.1002/jcb.10580 PMid:12874827 DOI: https://doi.org/10.1002/jcb.10580

Prietl B, TreiberG, PieberTR, Amrein K. Vitamin D and Immune Function. Nutrients. 2013;5(7): 2502–2521. https:/doi.org/10.3390/nu5072502 PMid:23857223 PMCid:PMC3738984 DOI: https://doi.org/10.3390/nu5072502

Hewison M. An update on vitamin D and human immunity. Clin Endocrinol. 2012;76:315–325. https:/doi.org/10.1111/j.1365-2265.2011.04261.x PMid:21995874 DOI: https://doi.org/10.1111/j.1365-2265.2011.04261.x

Knutsen AP, Freeman JJ, Mueller KR, Roodman ST, Bouhasin JD . Thymosin-α1 stimulates maturation of CD34+ stem cells into CD3+4+ cells in an in vitro thymic epithelia organ coculture model. Int J Immunopharmacol. 1999; 21: 15–26. https:/doi.org/10.1016/S0192-0561(98)00060-5 DOI: https://doi.org/10.1016/S0192-0561(98)00060-5

Galy AH, Hadden EM, Touraine JL, Hadden JW. Effects of cytokines on human thymic epithelial cells in culture: IL1 induces thymic epithelial cell proliferation and change in morphology. Cell Immunol.1989; 124(1):13-27. https:/doi.org/10.1016/0008-8749(89)90108-1 DOI: https://doi.org/10.1016/0008-8749(89)90108-1

Kouttab NM, Goldstein A, Lu M, Lu L, Campbell B, Maizel AL. Production of human B and T cell growth factors is enhanced by thymic hormones. Immunopharmacology. 1988; 16: 97-105. https:/doi.org/10.1016/0162-3109(88)90018-5 DOI: https://doi.org/10.1016/0162-3109(88)90018-5

Deluca HF, Cantorna MT. Vitamin D its role and uses in immunology. The FASEB Journal. 2001;15(14): 2579-2585. https:/doi.org/10.1096/fj.01-0433rev PMid:11726533 DOI: https://doi.org/10.1096/fj.01-0433rev

Ritterhouse LL, Lu R, Shah HB, Robertson JM, Fife DA, Maecker HT, Du H, et al. Vitamin D Deficiency in a Multiethnic Healthy Control Cohort and Altered Immune Response in Vitamin D Deficient European-American Healthy Controls. PloS one. 2014; 9 (4):e94500. https:/doi.org/10.1371/journal.pone.0094500 PMid:24727903 PMCid:PMC3984168 DOI: https://doi.org/10.1371/journal.pone.0094500

Lyakh LA, Sanford M, Chekol S, et al. TGF- beta and vitamin D3 utilize distinct pathways to suppress IL-12 production and modulate rapid differentiation of human monocytes into CD83+ dendritic cells. J Immunol. 2005;174:2061-2070. https:/doi.org/10.4049/jimmunol.174.4.2061 PMid:15699136 DOI: https://doi.org/10.4049/jimmunol.174.4.2061

Yamada T, Alpers DH, et al. Textbook of gastroenterology (5th ed.). Chichester, West Sussex: Blackwell Pub., 2009:495, 498, 499, 1274, 2526.

Hess SY, Peerson JM, King JC, Brown KH. Use of serum zinc concentration as an indicator of population zinc status. Food and nutrition bulletin. 2007; 28(3 Suppl): S403–29. https:/doi.org/10.1177/15648265070283S303 PMid:17988005 DOI: https://doi.org/10.1177/15648265070283S303

Chiplonkar SA, Kawade R. Effect of zinc- and micronutrient-rich food supplements on zinc and vitamin A status of adolescent girls. Nutrition. 2012; 28(5):551–8. https:/doi.org/10.1016/j.nut.2011.08.019 PMid:22129855 DOI: https://doi.org/10.1016/j.nut.2011.08.019

Calvo MS, Whiting SJ. Overview of the proceedings from Experimental Biology 2004 symposium: Vitamin D insufficiency: A significant risk factor in chronic diseases and potential disease-specific biomarkers of vitamin D sufficiency. J Nutr. 2005;135:301–303. PMid:15671231 DOI: https://doi.org/10.1093/jn/135.2.301

Malinda KM, Sidhu GS, Mani H, Banaudha K, Maheshwari RK, et al. Thymosin beta 4 accelerates wound healing. J Invest Dermatol. 1999 ;113:364–368. https:/doi.org/10.1046/j.1523-1747.1999.00708.x PMid:10469335 DOI: https://doi.org/10.1046/j.1523-1747.1999.00708.x

Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, Kiel DP, Streeten EA, Ohlsson C, Koller DL, et al. Common genetic determinants of vitamin D insufficiency: A genome-wide association study. Lancet. 2010;376:180–188. https:/doi.org/10.1016/S0140-6736(10)60588-0

Published

2016-11-30

How to Cite

1.
Sibaii HMR, El-Zayat SR, Abd El-Shaheed A, Mahfouz NN, Sallam SF, El Azma MH. The Hidden Function of Vitamin D. Open Access Maced J Med Sci [Internet]. 2016 Nov. 30 [cited 2024 Apr. 26];4(4):591-5. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2016.134

Issue

Section

A - Basic Science

Most read articles by the same author(s)