Vancomycin MIC Distribution among Methicillin-Resistant Staphylococcus Aureus. Is Reduced Vancomycin Susceptibility Related To MIC Creep?

Authors

  • Hala B. Othman Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
  • Rania M. Abdel Halim Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
  • Fatma Alzahraa M. Gomaa Microbiology and Immunology Department, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
  • Malaka Z. Amer Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt

DOI:

https://doi.org/10.3889/oamjms.2019.009

Keywords:

VISA, h-VISA, Vancomycin screening agar, BMD, Vancomycin MIC creep

Abstract

AIM: To determine the distribution of vancomycin MIC and the frequency of S. aureus strains with reduced vancomycin susceptibility among Methicillin-Resistant Staphylococcus aureus (MRSA) isolates.

METHODS: MRSA isolates (n = 100) were tested for reduced susceptibility to vancomycin using  MIC broth microdilution method (BMD), vancomycin screening agar with different vancomycin concentrations with and without casein, and Vitek 2 system.

RESULTS: BMD detected (22%) vancomycin-intermediate S. aureus (VISA) and (78%) vancomycin-susceptible S. aureus (VSSA) but couldn’t detect nine (Heterogeneous VISA) (hVISA)   isolates (9%) with MIC ≤ 2 µg/ml that grew on screening agar 4 µg/ml or 6 µg/ml. Adding casein to vancomycin screening agar increased detection rate of VISA by 4.5%.  Screening agar with 6 µg/ml vancomycin overall detection rate for VISA was 95.45%. Probable ‘pre-hVISA’isolates (17%) showed growth on vancomycin screening agar 2 µg/ml with casein. Vitek 2 system failed to detect any VISA isolates.

CONCLUSION: Vancomycin screening agar; 2 µg/ml and (4 and 6 µg/ml) were able to detect; probable “pre hVISA and (hVISA and VISA) isolates respectively based on their BMD MIC values. Decreased vancomycin susceptibility in MRSA isolates might be related to MIC creep. Analysis of vancomycin MIC values over longer periods is recommended to further study this phenomenon and its impact on vancomycin treatment failure.

 

ABSTRACT

Aims: Determine the distribution of vancomycin MIC and the frequency of S. aureus strains with reduced vancomycin susceptibility among MRSA isolates.

 Methods:  MRSA isolates (n =100) were tested for reduced susceptibility to vancomycin using  MIC broth microdilution method(BMD), vancomycin screening agar with different vancomycin concentrations with and without casein, and Vitek 2 system.

 Results: BMD detected (22%) vancomycin intermediate S. aureus(VISA) and (78%) vancomycin susceptible S. aureus(VSSA) but failed to detect nine (Heterogeneous VISA) (hVISA)  isolates (9%) with MIC ≤2ug/ml that grew on screening agar 4ug/ml or 6 ug/ml. Adding casein to vancomycin screening agar increased detection rate of VISA by 4.5%.  Screening agar with 6 ug/ml vancomycin over all detection rate for VISA was 95.45%. Probable ‘pre-hVISA’isolates (17%) showed growth on vancomycin screening agar 2µg/ml with casein. Vitek 2 system failed to detect any VISA isolates.

Conclusion: vancomycin screening agar; 2 µg/ml and (4 and 6 µg/ml) were able to detect; probable “pre hVISA and (hVISA and VISA) isolates respectively based on their BMD MIC values. Decreased vancomycin susceptibility in MRSA isolates might be related to MIC creep. Analysis of vancomycin MIC values over longer periods of time is recommended to further study this phenomenon and its impact on vancomycin treatment failure.

 

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. The Journal of antimicrobial chemotherapy. 1997; 40(1):135-6. https://doi.org/10.1093/jac/40.1.135 PMid:9249217 DOI: https://doi.org/10.1093/jac/40.1.135

Di Gregorio S, Perazzi B, Ordonez AM, De Gregorio S, Foccoli M, Lasala MB, García S, Vay C, Famiglietti A, Mollerach M. Clinical, microbiological, and genetic characteristics of heteroresistant vancomycin-intermediate Staphylococcus aureus bacteremia in a teaching hospital. Microbial Drug Resistance. 2015; 21(1):25-34. https://doi.org/10.1089/mdr.2014.0190 PMid:25535825 PMCid:PMC4367492 DOI: https://doi.org/10.1089/mdr.2014.0190

Nadarajah R, Post LR, Liu C, Miller SA, Sahm DF, Brooks GF. Detection of vancomycin-intermediate Staphylococcus aureus with the updated Trek-Sensititre System and the MicroScan System: comparison with results from the conventional Etest and CLSI standardized MIC methods. American journal of clinical pathology. 2010; 133(6):844-8. https://doi.org/10.1309/AJCPMV1P0VKUAZRD PMid:20472841 DOI: https://doi.org/10.1309/AJCPMV1P0VKUAZRD

Edwards B, Milne K, Lawes T, Cook I, Robb A, Gould IM. Is vancomycin MIC "creep" method dependent? Analysis of methicillin-resistant Staphylococcus aureus susceptibility trends in blood isolates from North East Scotland from 2006 to 2010. Journal of clinical microbiology. 2012; 50(2):318-25. https://doi.org/10.1128/JCM.05520-11 PMid:22135252 PMCid:PMC3264194 DOI: https://doi.org/10.1128/JCM.05520-11

Rojas L, Bunsow E, Munoz P, Cercenado E, Rodríguez-Créixems M, Bouza E. Vancomycin MICs do not predict the outcome of methicillin-resistant Staphylococcus aureus bloodstream infections in correctly treated patients. Journal of antimicrobial chemotherapy. 2012; 67(7):1760-8. https://doi.org/10.1093/jac/dks128 PMid:22556382 DOI: https://doi.org/10.1093/jac/dks128

Devi Y, Punithavathy PM, Thomas S, Veeraraghavan B. Challenges in the Laboratory Diagnosis and Clinical Management of Heteroresistant Vancomycin Staphylococcus aureus (hVISA). Clinical Microbiology: Open Access. 2015. DOI: https://doi.org/10.4172/2327-5073.1000214

CDC. 2012. https://www.cdc.gov/hai/settings/lab/visa_vrsa_lab_detection.html

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Twenty-eighth informational supplements. M100- S28. Wayne, PA (CLSI), 2018.

Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clinical microbiology reviews. 2010; 23(1):99-139. https://doi.org/10.1128/CMR.00042-09 PMid:20065327 PMCid:PMC2806658 DOI: https://doi.org/10.1128/CMR.00042-09

Tenover FC, Moellering Jr RC. The rationale for revising the Clinical and Laboratory Standards Institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus. Clinical Infectious Diseases. 2007; 44(9):1208-15. https://doi.org/10.1086/513203 PMid:17407040 DOI: https://doi.org/10.1086/513203

Yusof A, Engelhardt A, Karlsson Ã…, Bylund L, Vidh P, Mills K, Wootton M, Walsh TR. Evaluation of a new Etest vancomycin-teicoplanin strip for detection of glycopeptide-intermediate Staphylococcus aureus (GISA), in particular, heterogeneous GISA. Journal of clinical microbiology. 2008; 46(9):3042-7. https://doi.org/10.1128/JCM.00265-08 PMid:18596146 PMCid:PMC2546754 DOI: https://doi.org/10.1128/JCM.00265-08

Satola SW, Farley MM, Anderson KF, Patel JB. Comparison of detection methods for heteroresistant vancomycin-intermediate Staphylococcus aureus, with the population analysis profile method as the reference method. Journal of clinical microbiology. 2011; 49(1):177-83. https://doi.org/10.1128/JCM.01128-10 PMid:21048008 PMCid:PMC3020420 DOI: https://doi.org/10.1128/JCM.01128-10

Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. Twenty-fifth informational supplements. M100- S25. Wayne, PA, 2015.

Vaudaux P, Huggler E, Bernard L, Ferry T, Renzoni A, Lew DP. Underestimation of vancomycin and teicoplanin MICs by broth microdilution leads to underdetection of glycopeptide-intermediate isolates of Staphylococcus aureus. Antimicrobial agents and chemotherapy. 2010; 54(9):3861-70. https://doi.org/10.1128/AAC.00269-10 PMid:20547791 PMCid:PMC2934981 DOI: https://doi.org/10.1128/AAC.00269-10

Hiramatsu K, Kayayama Y, Matsuo M, Aiba Y, Saito M, Hishinuma T, Iwamoto A. Vancomycin-intermediate resistance in Staphylococcus aureus. Journal of global antimicrobial resistance. 2014; 2(4):213-24. https://doi.org/10.1016/j.jgar.2014.04.006 PMid:27873679 DOI: https://doi.org/10.1016/j.jgar.2014.04.006

Lodise TP, Graves J, Evans A, Graffunder E, Helmecke M, Lomaestro BM, Stellrecht K. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrobial agents and chemotherapy. 2008; 52(9):3315-20. https://doi.org/10.1128/AAC.00113-08 PMid:18591266 PMCid:PMC2533486 DOI: https://doi.org/10.1128/AAC.00113-08

Sakoulas G, Moise-Broder PA, Schentag J, Forrest A, Moellering RC, Eliopoulos GM. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. Journal of clinical microbiology. 2004; 42(6):2398-402. https://doi.org/10.1128/JCM.42.6.2398-2402.2004 PMid:15184410 PMCid:PMC427878 DOI: https://doi.org/10.1128/JCM.42.6.2398-2402.2004

Willey BM, Kreiswirth N, Gelosia A, Porter C, Alqhahtani M, Mazzulli T, Pong-Porter S, Larocque C, Pike K, Kreiswirth NNB, Wong K, Poutanen S, Low DE. Screening for vancomycin-intermediate Staphylococcus aureus (VISA): does casein make a difference?, abstr. D-2210. Abstr. 48th Annu Intersci Conf Antimicrob Agents Chemother. (ICAAC) Infect Dis Soc Am. (IDSA) 46th Annu Meet American Society for Microbiology and Infectious Diseases Society of America, Washington, DC, 2008.

Howden BP, Ward PB, Xie S, Wang JL, Johnson PD, Charles PG, Grayson ML. A new agar dilution screening method for the accurate detection of heterogenous-vancomycin intermediate Staphylococcus aureus (hVISA). ASA Newsl. 2004; 19:9-10.

Riederer K, Shemes S, Chase P, Musta A, Mar A, Khatib R. Detection of vancomycin-intermediately susceptible and heterogeneous Staphylococcus aureus isolates: comparison of Etest and agar screening methods. Journal of clinical microbiology. 2011. https://doi.org/10.1128/JCM.01435-10 PMid:21490190 PMCid:PMC3122762 DOI: https://doi.org/10.1128/JCM.01435-10

Burnham CA, Weber CJ, Dunne WM. Novel screening agar for detection of vancomycin-nonsusceptible Staphylococcus aureus. Journal of clinical microbiology. 2010; 48(3):949-51. https://doi.org/10.1128/JCM.02295-09 PMid:20089765 PMCid:PMC2832426 DOI: https://doi.org/10.1128/JCM.02295-09

CDC (2015): Investigation and Control of Vancomycin- Resistant Staphylococcus aureus (VRSA), 2015. Update. https://www.cdc.gov/hai/pdfs/vrsa-investigation-guide-05_12_2015.pdf

Walsh TR, Bolmström A, Qwärnström A, Ho P, Wootton M, Howe RA, MacGowan AP, Diekema D. Evaluation of current methods for detection of staphylococci with reduced susceptibility to glycopeptides. Journal of clinical microbiology. 2001; 39(7):2439-44. https://doi.org/10.1128/JCM.39.7.2439-2444.2001 PMid:11427551 PMCid:PMC88167 DOI: https://doi.org/10.1128/JCM.39.7.2439-2444.2001

Swenson JM, Anderson KF, Lonsway DR, Thompson A, McAllister SK, Limbago BM, Carey RB, Tenover FC, Patel JB. Accuracy of commercial and reference susceptibility testing methods for detecting vancomycin-intermediate Staphylococcus aureus. Journal of clinical microbiology. 2009; 47(7):2013-7. https://doi.org/10.1128/JCM.00221-09 PMid:19420170 PMCid:PMC2708520 DOI: https://doi.org/10.1128/JCM.00221-09

Mason EO, Lamberth LB, Hammerman WA, Hulten KG, Versalovic J, Kaplan SL. Vancomycin MICs for Staphylococcus aureus vary by detection method and have subtly increased in a pediatric population since 2005. Journal of Clinical Microbiology. 2009; 47(6):1628-30. https://doi.org/10.1128/JCM.00407-09 PMid:19403769 PMCid:PMC2691127 DOI: https://doi.org/10.1128/JCM.00407-09

Kruzel MC, Lewis CT, Welsh KJ, Lewis EM, Dundas NE, Mohr JF, Armitige LY, Wanger A. Determination of vancomycin and daptomycin MICs by different testing methods for methicillin-resistant Staphylococcus aureus. Journal of clinical microbiology. 2011; 49(6):2272-3. https://doi.org/10.1128/JCM.02215-10 PMid:21450951 PMCid:PMC3122735 DOI: https://doi.org/10.1128/JCM.02215-10

Cook AM, Ramsey CN, Martin CA, Pittman T. Linezolid for the treatment of a heteroresistant Staphylococcus aureus shunt infection. Pediatric neurosurgery. 2005; 41(2):102-4. https://doi.org/10.1159/000085165 PMid:15942282 DOI: https://doi.org/10.1159/000085165

Yanagihara K, Okada M, Fukuda Y, Imamura Y, Kaneko Y, Ohno H, Higashiyama Y, Miyazaki Y, Tsukamoto K, Hirakata Y, Tomono K. Efficacy of quinupristin-dalfopristin against methicillin-resistant Staphylococcus aureus and vancomycin-insensitive S. aureus in a model of hematogenous pulmonary infection. Chemotherapy. 2004; 50(5):260-4. https://doi.org/10.1159/000081948 PMid:15528893 DOI: https://doi.org/10.1159/000081948

Schmitz FJ, Krey A, Geisel R, Verhoef J, Heinz HP, Fluit AC, SENTRY Participants Group. Susceptibility of 302 methicillin-resistant Staphylococcus aureus isolates from 20 European university hospitals to vancomycin and alternative antistaphylococcal compounds. European Journal of Clinical Microbiology and Infectious Diseases. 1999; 18(7):528-30. https://doi.org/10.1007/s100960050340 PMid:10482037 DOI: https://doi.org/10.1007/s100960050340

Aucken HM, Warner M, Ganner M, Johnson AP, Richardson JF, Cookson BD, Livermore DM. Twenty months of screening for glycopeptide-intermediate Staphylococcus aureus. Journal of Antimicrobial Chemotherapy. 2000; 46(4):639-40. https://doi.org/10.1093/jac/46.4.639-a PMid:11020266 DOI: https://doi.org/10.1093/jac/46.4.639-a

Wootton M, Howe RA, Hillman R, Walsh TR, Bennett PM, MacGowan AP. A modified population analysis profile (PAP) method to detect hetero-resistance to vancomycin in Staphylococcus aureus in a UK hospital. Journal of Antimicrobial Chemotherapy. 2001; 47(4):399-403. https://doi.org/10.1093/jac/47.4.399 PMid:11266410 DOI: https://doi.org/10.1093/jac/47.4.399

Denis O, Nonhoff C, Byl B, Knoop C, Bobin-Dubreux S, Struelens MJ. Emergence of vancomycin-intermediate Staphylococcus aureus in a Belgian hospital: microbiological and clinical features. Journal of antimicrobial chemotherapy. 2002; 50(3):383-91. https://doi.org/10.1093/jac/dkf142 PMid:12205063 DOI: https://doi.org/10.1093/jac/dkf142

Pierard D, Vandenbussche H, Verschraegen I, Lauwers S. Screening for Staphylococcus aureus with a reduced susceptibility to vancomycin in: a Belgian hospital. Pathologie Biologie. 2004; 52(8):486-8. https://doi.org/10.1016/j.patbio.2004.07.016 PMid:15465269 DOI: https://doi.org/10.1016/j.patbio.2004.07.016

Chen CJ, Huang YC. New epidemiology of S taphylococcus aureus infection in A sia. Clinical Microbiology and Infection. 2014; 20(7):605-23. https://doi.org/10.1111/1469-0691.12705 PMid:24888414 DOI: https://doi.org/10.1111/1469-0691.12705

Published

2018-12-22

How to Cite

1.
Othman HB, Abdel Halim RM, Gomaa FAM, Amer MZ. Vancomycin MIC Distribution among Methicillin-Resistant Staphylococcus Aureus. Is Reduced Vancomycin Susceptibility Related To MIC Creep?. Open Access Maced J Med Sci [Internet]. 2018 Dec. 22 [cited 2024 Apr. 25];7(1):12-8. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2019.009

Issue

Section

A - Basic Science

Similar Articles

You may also start an advanced similarity search for this article.