The Role of Nanomaterials in the Treatment of Diseases and Their Effects on the Immune System

Authors

  • Razieh Rezaei Advanced Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Mohsen Safaei Advanced Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Hamid Reza Mozaffari Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Hedaiat Moradpoor Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Sara Karami Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Amin Golshah Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Behroz Salimi School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
  • Hossein Karami School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran

DOI:

https://doi.org/10.3889/oamjms.2019.486

Keywords:

Nanomedicine;, Nanomaterials, Immune system, Autoimmune diseases, Nanotoxicology

Abstract

Nanotechnology has been widely exploited in recent years in various applications. Different sectors of medicine and treatment have also focused on the use of nanoproducts. One of the areas of interest in the treatment measures is the interaction between nanomaterials and immune system components. Engineered nanomaterials can stimulate the inhibition or enhancement of immune responses and prevent the detection ability of the immune system. Changes in immune function, in addition to the benefits, may also lead to some damage. Therefore, adequate assessment of the novel nanomaterials seems to be necessary before practical use in treatment. However, there is little information on the toxicological and biological effects of nanomaterials, especially on the potential ways of contacting and handling nanomaterials in the body and the body response to these materials. Extensive variation and different properties of nanomaterials have made it much more difficult to access their toxicological effects to the present. The present study aims to raise knowledge about the potential benefits and risks of using the nanomaterials on the immune system to design and safely employ these compounds in therapeutic purposes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Safaei M, Karimi N, Alavi M, Taran M. Application of nanomaterial in nutrition and food sciences. J Adv Appl Sci Res. 2017; 1(12):1-16.

Zhang L, Jiang Y, Ding Y, Povey M, York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res. 2007; 9:479-489. https://doi.org/10.1007/s11051-006-9150-1

Safaei M, Taran M. Optimal conditions for producing bactericidal sodium hyaluronate-TiO2 bionanocomposite and its characterization. Int J Biol Macromol. 2017; 104:449-456. https://doi.org/10.1016/j.ijbiomac.2017.06.016 PMid:28619641

Morigi V, Tocchio A, Bellavite Pellegrini C, Sakamoto JH, Arnone M, Tasciotti E. Nanotechnology in medicine: from inception to market domination. J Drug Deliv. 2012; 389485. https://doi.org/10.1155/2012/389485 PMid:22506121 PMCid:PMC3312282

Goppert TM, Muller RH. Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target. 2005; 13:179-187. https://doi.org/10.1080/10611860500071292 PMid:16036306

Toy R, Roy K. Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng Transl Med. 2016; 1:47-62. https://doi.org/10.1002/btm2.10005 PMid:29313006 PMCid:PMC5689503

Kwong B, Liu H, Irvine DJ. Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy. Biomaterials. 2011; 32:5134-5147. https://doi.org/10.1016/j.biomaterials.2011.03.067 PMid:21514665 PMCid:PMC3140866

Moyer E, Hardon A. A disease unlike any other? Why HIV remains exceptional in the age of treatment. Med Anthropol. 2014; 33:263-269. https://doi.org/10.1080/01459740.2014.890618 PMid:24661122

Margolis DM, Koup RA, Ferrari G. HIV antibodies for treatment of HIV infection. Immunol Rev. 2017; 275:313-323. https://doi.org/10.1111/imr.12506 PMid:28133794 PMCid:PMC5556378

Mozaffari HR, Izadi B, Sadeghi M, Rezaei F, Sharifi R, Jalilian F. Prevalence of oral and pharyngeal cancers in Kermanshah province, Iran: A ten-year period. Int J Cancer Res. 2016; 12:169-175. https://doi.org/10.3923/ijcr.2016.169.175

Mozaffari HR, Payandeh M, Ramezani M, Sadeghi M, Mahmoudiahmadabadi M, Sharifi R. Efficacy of palifermin on oral mucositis and acute GVHD after hematopoietic stem cell transplantation (HSCT) in hematology malignancy patients: a meta-analysis of trials. Wspolczesna Onkol. 2017; 21:299-305. https://doi.org/10.5114/wo.2017.72400 PMid:29416437 PMCid:PMC5798422

Imani MM, Safaei M. Optimized Synthesis of Magnesium Oxide Nanoparticles as Bactericidal Agents. J Nanotechnol. 2019; 6063832. https://doi.org/10.1155/2019/6063832

Wong CY, Al-Salami H, Dass CR. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release. 2017; 264:247-275. https://doi.org/10.1016/j.jconrel.2017.09.003 PMid:28887133

Sharifi R, Nazari H, Bolourchi P, Khazaei S, Parirokh M. The most painful site of maxillary anterior infiltrations. Dent Res J (Isfahan). 2016; 13:539-543. https://doi.org/10.4103/1735-3327.197030

Chakravarthy KV, Boehm FJ, Christo PJ. Nanotechnology: A Promising New Paradigm for the Control of Pain. Pain Med. 2017; 19:232-243. https://doi.org/10.1093/pm/pnx131 PMid:29036629

Mozaffari HR, Zavattaro E, Saeedi M, Lopez-Jornet P, Sadeghi M, Safaei M, Imani MM, Nourbakhsh R, Moradpoor H, Golshah A, Sharifi R. Serum and salivary interleukin-4 levels in patients with oral lichen planus: A systematic review and meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019. https://doi.org/10.1016/j.oooo.2019.04.003 PMid:31097393

Mozaffari HR, Zavattaro E, Abdolahnejad A, Lopez-Jornet P, Omidpanah N, Sharifi R, Sadeghi M, Shooriabi M, Safaei M. Serum and Salivary IgA, IgG, and IgM Levels in Oral Lichen Planus: A Systematic Review and Meta-Analysis of Case-Control Studies. Medicina. 2018; 54(6):99. https://doi.org/10.3390/medicina54060099 PMid:30513983 PMCid:PMC6306895

Chen WY, Lin JY, Chen WJ, Luo L, Wei-Guang Diau E, Chen YC. Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria. Nanomedicine (Lond). 2010; 5:755-764. https://doi.org/10.2217/nnm.10.43 PMid:20662646

Marchesan S, Prato M. Nanomaterials for (Nano) medicine. ACS Med Chem Lett. 2013; 4:147-149. https://doi.org/10.1021/ml3003742 PMid:24900637 PMCid:PMC4027518

Hassan S, Prakash G, Ozturk AB, Saghazadeh S, Sohail MF, Seo J, Dokmeci MR, Zhang YS, Khademhosseini A. Evolution and clinical translation of drug delivery nanomaterials. Nano Today. 2017; 15:91-106. https://doi.org/10.1016/j.nantod.2017.06.008 PMid:29225665 PMCid:PMC5720147

Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid-Based Complementary Altern Med. 2015; 246012. https://doi.org/10.1155/2015/246012 PMid:25861355 PMCid:PMC4378595

Safaei M, Taran M. Fabrication, characterization, and antifungal activity of sodium hyaluronate-TiO2 bionanocomposite against Aspergillus niger. Mater Lett. 2017; 207:113-116. https://doi.org/10.1016/j.matlet.2017.07.038

Safaei M, Taran M, Imani MM. Preparation, structural characterization, thermal properties and antifungal activity of alginate-CuO bionanocomposite. Mater Sci Eng C. 2019; 101:323-329. https://doi.org/10.1016/j.msec.2019.03.108 PMid:31029325

Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv Drug Deliv Rev. 2012; 64:1363-1384. https://doi.org/10.1016/j.addr.2012.08.005 PMid:22917779 PMCid:PMC3517211

Agoulmine N, Kim K, Kim S, Rim T, Lee JS, Meyyappan M. Enabling communication and cooperation in bio-nanosensor networks: toward innovative healthcare solutions. IEEE Wirel Commun. 2012; 19:42-51. https://doi.org/10.1109/MWC.2012.6339471

Salvati E, Stellacci F, Krol S. Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine. 2015; 10:3495-3512. https://doi.org/10.2217/nnm.15.180 PMid:26606949

Schoots IG, Roobol MJ, Nieboer D, Bangma CH, Steyerberg EW, Hunink MM. Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol. 2015; 68:438-450. https://doi.org/10.1016/j.eururo.2014.11.037 PMid:25480312

Cyranoski D. Japan sets sights on success in nanotechnology. Nature. 2000; 408:624. https://doi.org/10.1038/35046296 PMid:11117757

Zahid M, Kim B, Hussain R, Amin R, Park SH. DNA nanotechnology: a future perspective. Nanoscale Res Lett. 2013; 8:119. https://doi.org/10.1186/1556-276X-8-119 PMid:23497147 PMCid:PMC3599551

Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. ‎Drug Des Dev Ther. 2017; 11:2871-2890. https://doi.org/10.2147/DDDT.S142337 PMid:29033548 PMCid:PMC5628667

Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res Int. 2014; 180549. https://doi.org/10.1155/2014/180549 PMid:24772414 PMCid:PMC3977416

Corbo C, Molinaro R, Parodi A, Toledano Furman NE, Salvatore F, Tasciotti E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine. 2016; 11:81-100. https://doi.org/10.2217/nnm.15.188 PMid:26653875 PMCid:PMC4910943

Klippstein R, Pozo D. Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine. 2010; 6:523-529. https://doi.org/10.1016/j.nano.2010.01.001 PMid:20085824

Schweingruber N, Haine A, Tiede K, Karabinskaya A, van den Brandt J, Wüst S, Metselaar JM, Gold R, Tuckermann JP, Reichardt HM, Lühder F. Liposomal encapsulation of glucocorticoids alters their mode of action in the treatment of experimental autoimmune encephalomyelitis. J Immunol. 2011; 187:4310-4318. https://doi.org/10.4049/jimmunol.1101604 PMid:21918186

Tsai S, Shameli A, Yamanouchi J, Clemente-Casares X, Wang J, Serra P, Yang Y, Medarova Z, Moore A, Santamaria P. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity. 2010; 32:568-580. https://doi.org/10.1016/j.immuni.2010.03.015 PMid:20381385

Clemente-Casares X, Tsai S, Yang Y, Santamaria P. Peptide-MHC-based nanovaccines for the treatment of autoimmunity: a "one size fits all" approach?. J Mol Med. 2011; 89:733-742. https://doi.org/10.1007/s00109-011-0757-z PMid:21499734

Clemente-Casares X, Santamaria P. Nanomedicine in autoimmunity. Immunol Lett. 2014; 158:167-174. https://doi.org/10.1016/j.imlet.2013.12.018 PMid:24406504

Tran LT, Lesieur S, Faivre V. Janus nanoparticles: materials, preparation and recent advances in drug delivery. Expert Opin Drug Deliv. 2014; 11:1061-1074. https://doi.org/10.1517/17425247.2014.915806 PMid:24811771

Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissa M, Elaissari A. Janus colloidal particles: preparation, properties, and biomedical applications. ACS Appl Mater Interfaces. 2013; 5:1857-1869. https://doi.org/10.1021/am302528g PMid:23394306

Cooper EL. Evolution of immune systems from self/not self to danger to artificial immune systems (AIS). Phys Life Rev. 2010; 7:55-78. https://doi.org/10.1016/j.plrev.2009.12.001 PMid:20374928

Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009; 61:428-437. https://doi.org/10.1016/j.addr.2009.03.009 PMid:19376175 PMCid:PMC3683962

Moyano DF, Liu Y, Peer D, Rotello VM. Modulation of immune response using engineered nanoparticle surfaces. Small. 2016; 12:76-82. https://doi.org/10.1002/smll.201502273 PMid:26618755 PMCid:PMC4749139

Klippstein R, Pozo D. Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine. 2010; 6:523-529. https://doi.org/10.1016/j.nano.2010.01.001 PMid:20085824

Aldinucci A, Turco A, Biagioli T, Toma FM, Bani D, Guasti D, Manuelli C, Rizzetto L, Cavalieri D, Massacesi L, Mello T. Carbon nanotube scaffolds instruct human dendritic cells: modulating immune responses by contacts at the nanoscale. Nano Lett. 2013; 13:6098-60105. https://doi.org/10.1021/nl403396e PMid:24224474

Gustafsson Ã…, Lindstedt E, Elfsmark LS, Bucht A. Lung exposure of titanium dioxide nanoparticles induces innate immune activation and long-lasting lymphocyte response in the Dark Agouti rat. J Immunotoxicol. 2011; 8:111-121. https://doi.org/10.3109/1547691X.2010.546382 PMid:21309687 PMCid:PMC3104284

Das J, Choi YJ, Song H, Kim JH. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery. Hum Reprod Update. 2016; 22:588-619. https://doi.org/10.1093/humupd/dmw020 PMid:27385359

Buonaguro L, Pulendran B. Immunogenomics and systems biology of vaccines. Immunol Rev. 2011; 239:197-208. https://doi.org/10.1111/j.1600-065X.2010.00971.x PMid:21198673 PMCid:PMC3253346

Ludwig C, Wagner R. Virus-like particles-universal molecular toolboxes. Curr Opin Biotechnol. 2007; 18:537-545. https://doi.org/10.1016/j.copbio.2007.10.013 PMid:18083549

Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv Drug Deliv Rev. 2008; 60:915-928. https://doi.org/10.1016/j.addr.2007.05.017 PMid:18325628

Roy P, Noad R. Virus like particles as a vaccine delivery system: Myths and facts. Hum Vaccin. 2008; 4:5-12. https://doi.org/10.4161/hv.4.1.5559 PMid:18438104

Audran R, Peter K, Dannull J, Men Y, Scandella E, Groettrup M, Gander B, Corradin G. Encapsulation of peptides in biodegradable microspheres prolongs their MHC class-I presentation by dendritic cells and macrophages in vitro. Vaccine. 2003; 21:1250-1255. https://doi.org/10.1016/S0264-410X(02)00521-2

Alavi M, Karimi N, Safaei M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull. 2017; 7:3-9. https://doi.org/10.15171/apb.2017.002 PMid:28507932 PMCid:PMC5426731

Kersten GF, Crommelin DJ. Liposomes and ISCOMS. Vaccine. 2003; 21:915-920. https://doi.org/10.1016/S0264-410X(02)00540-6

Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg AP. Nanoparticle vaccines. Vaccine. 2014; 32:327-337. https://doi.org/10.1016/j.vaccine.2013.11.069 PMid:24295808

Stampfli MR, Anderson GP. How cigarette smoke skews immune responses to pro- mote infection, lung disease and cancer. Nat Rev Immunol. 2009; 9:377-384. https://doi.org/10.1038/nri2530 PMid:19330016

Barton GM. A calculated response: control of inflammation by the innate immune system. J Clin Invest. 2008; 118:413-420. https://doi.org/10.1172/JCI34431 PMid:18246191 PMCid:PMC2214713

Clift MJ, Gehr P. Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative. Arch Toxicol. 2011; 85:723-731. https://doi.org/10.1007/s00204-010-0560-6 PMid:20499226

Dekali S, Gamez C, Kortulewski T, Blazy K, Rat P, Lacroix G. Assessment of an in vitro model of pulmonary barrier to study the translocation of nanoparticles. Toxicol Rep. 2014; 1:157-171. https://doi.org/10.1016/j.toxrep.2014.03.003 PMid:28962236 PMCid:PMC5598380

Cho WS, Duffin R, Howie SE, Scotton CJ, Wallace WA, MacNee W, Bradley M, Megson IL, Donaldson K. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol. 2011; 8:27. https://doi.org/10.1186/1743-8977-8-27 PMid:21896169 PMCid:PMC3179432

Wang X, Xia T, Addo Ntim S, Ji Z, Lin S, Meng H, Chung CH, George S, Zhang H, Wang M, Li N. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano. 2011; 5:9772-9787. https://doi.org/10.1021/nn2033055 PMid:22047207 PMCid:PMC4136431

Schinwald A, Murphy FA, Jones A, MacNee W, Donaldson K. Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano. 2012; 6:736-746. https://doi.org/10.1021/nn204229f PMid:22195731

Rossi EM, Pylkkanen L, Koivisto AJ, Nykasenoja H, Wolff H, Savolainen K, Alenius H. Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Part Fibre Toxicol. 2010; 7:35. https://doi.org/10.1186/1743-8977-7-35 PMid:21108815 PMCid:PMC3003234

Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Larese FF. Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occup Environ Health. 2009; 82:1043-1055. https://doi.org/10.1007/s00420-009-0458-x PMid:19705142

Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci. 2006; 91:159-165. https://doi.org/10.1093/toxsci/kfj122 PMid:16443688

Gulson B, McCall M, Korsch M, Gomez L, Casey P, Oytam Y, Taylor A, McCulloch M, Trotter J, Kinsley L, Greenoak G. Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci. 2010; 118:140-149. https://doi.org/10.1093/toxsci/kfq243 PMid:20705894

Published

2019-06-16

How to Cite

1.
Rezaei R, Safaei M, Mozaffari HR, Moradpoor H, Karami S, Golshah A, Salimi B, Karami H. The Role of Nanomaterials in the Treatment of Diseases and Their Effects on the Immune System. Open Access Maced J Med Sci [Internet]. 2019 Jun. 16 [cited 2024 Apr. 25];7(11):1884-90. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2019.486

Issue

Section

F - Review Articles

Most read articles by the same author(s)