Ventriculoperitoneal Shunt Infection: A Study about Age as a Risk Factor in Hydrocephalus Pediatrics

Authors

  • Reza Akbar Bastian Department of Surgery, Division of Neurosurgery, Universitas Gadjah Mada, Yogyakarta, Indonesia https://orcid.org/0000-0002-4062-0461
  • Handoyo Pramusinto Department of Surgery, Division of Neurosurgery, Universitas Gadjah Mada, Yogyakarta, Indonesia image/svg+xml
  • Endro Basuki Department of Surgery, Division of Neurosurgery, Universitas Gadjah Mada, Yogyakarta, Indonesia image/svg+xml
  • Marianne Marianne Department of Pharmacology Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia image/svg+xml https://orcid.org/0000-0003-4378-8611

DOI:

https://doi.org/10.3889/oamjms.2022.8251

Keywords:

Shunt infection, Hydrocephalus, Pediatric, Risk factors

Abstract

BACKGROUND: Shunt infection is one of the dreaded and serious complications following ventriculoperitoneal shunt (VP shunt) insertion, especially in a pediatric population. Numerous risk factors have been identified, particularly in developing countries, indicating that age may play an essential element in the pathogenesis of shunt infection, typically in patients <1-year-old. However, a few research demonstrate the inverse result.

AIM: The purpose of this was to determine the relationship between age and shunt infection so that it can be taken into consideration when performing VP shunt insertion.

METHODS: From January 2017 to December 2019, 98 pediatric patients with hydrocephalus who underwent VP shunt insertion were retrospectively reviewed to determine the relationship between age and shunt infection. We evaluated the microbiology results and management of shunt infection in patients with shunt infection.

RESULTS: Fifteen (15.15%) of 98 patients developed shunt infection. Patients aged >3–6 months had a significantly increased risk of shunt infection (p = 0.04; RR = 4.15; CI 95% = 1.19–14.45). Staphylococcus aureus was the most frequently encountered pathogen in pediatric patients with shunt infection (53.3%), and the most common management for shunt infection was complete removal of the shunt and systemic antibiotics followed by re-insertion of the shunt after the cerebrospinal fluid was sterile (46.6%).

CONCLUSION: We conclude that age, especially those aged >3–6 months, has a significantly higher risk of shunt infection in pediatric patients.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Xu H, Hu F, Hu H, Sun W, Jiao W, Li R, et al. Antibiotic prophylaxis for shunt surgery of children: A systematic review. Childs Nerv Syst. 2016;32(2):253-8. https://doi.org/10.1007/s00381-015-2937-6 PMid:26499129 DOI: https://doi.org/10.1007/s00381-015-2937-6

Hanak BW, Bonow RH, Harris CA, Browd SR. Cerebrospinal fluid shunting complications in children. Pediatr Neurosurg. 2017;52(6):381-400. https://doi.org/10.1159/000452840 PMid:28249297 DOI: https://doi.org/10.1159/000452840

Kulkarni AV, Drake JM, Lamberti-Pasculli M. Cerebrospinal fluid shunt infection: A prospective study of risk factors. J Neurosurg. 2001;94(2):195-201. https://doi.org/10.3171/jns.2001.94.2.0195 PMid:11213954 DOI: https://doi.org/10.3171/jns.2001.94.2.0195

Månsson P, Johansson S, Ziebell M, Juhler M. Forty years of shunt surgery at Rigshospitalet, Denmark: A retrospective study comparing past and present rates and causes of revision and infection. BMJ Open. 2017;7:e013389. https://doi.org/10.1136/bmjopen-2016-013389 PMid:28093434 DOI: https://doi.org/10.1136/bmjopen-2016-013389

Fulkerson DH, Vachhrajani S, Bohnstedt BN, Patel NB, Patel AJ, Fox BD, et al. Analysis of the risk of shunt failure or infection related to cerebrospinal fluid cell count, protein level, and glucose levels in low-birth-weight premature infants with posthemorrhagic hydrocephalus. J Neurosurg Pediatr. 2011;7(2):147-51. https://doi.org/10.3171/2010.11.PEDS10244 PMid:21284459 DOI: https://doi.org/10.3171/2010.11.PEDS10244

Sacar S, Turgut H, Toprak S, Cirak B, Coskun E, Yilmaz O, et al. A retrospective study of central nervous system shunt infections diagnosed in a university hospital during a 4-year period. BMC Infect Dis. 2006;6:43. https://doi.org/10.1186/1471-2334-6-43 PMid:16524475 DOI: https://doi.org/10.1186/1471-2334-6-43

Patih AM. Profil Pasien Infeksi Ventrikuloperitoneal Shunt Di Rumah Sakit Cipto Mangunkusumo Periode April 2009-April 2014. Vol. 25. Indonesia: Universitas Indonesia Library; 2014. p. 4-5.

Lee JK, Seok JY, Lee JH, Choi EH, Phi JH, Kim SK, et al. Incidence and risk factors of ventriculoperitoneal shunt infections in children: A study of 333 consecutive shunts in 6 years. J Korean Med Sci. 2012;27(12):1563-8. https://doi.org/10.3346/jkms.2012.27.12.1563 PMid:23255859 DOI: https://doi.org/10.3346/jkms.2012.27.12.1563

Braga MH, De Carvalho GT, Brandão RA, De Lima FB, Costa BS. Early shunt complications in 46 children with hydrocephalus. Arq Neuropsiquiatr. 2009;67(2 A):273-7. https://doi.org/10.1590/s0004-282x2009000200019 PMid:19547822 DOI: https://doi.org/10.1590/S0004-282X2009000200019

Davis SE, Levy ML, McComb JG, Masri-Lavine L. Does age or other factors influence the incidence of ventriculoperitoneal shunt infections? Pediatr Neurosurg. 1999;30(5):253-7. https://doi.org/10.1159/000028806 PMid:10461072 DOI: https://doi.org/10.1159/000028806

Borgbjerg BM, Gjerris F, Albeck MJ, Børgesen SE. Risk of infection after cerebrospinal fluid shunt: An analysis of 884 first-time shunts. Acta Neurochir (Wien). 1995;136(1-2):1-7. https://doi.org/10.1007/BF01411427 PMid:8748819 DOI: https://doi.org/10.1007/BF01411427

Woo PY, Wong HT, Pu JK, Wong WK, Wong LY, Lee MW, et al. Primary ventriculoperitoneal shunting outcomes: A multicentre clinical audit for shunt infection and its risk factors. Hong Kong Med J. 2016;22(5):410-9. https://doi.org/10.12809/hkmj154735 PMid:27562986 DOI: https://doi.org/10.12809/hkmj154735

Sarguna P, Lakshmi V. Ventriculoperitoneal shunt infections. Indian J Med Microbiol. 2006;24(1):52-4. https://doi.org/10.4103/0255-0857.19896 PMid:16505557 DOI: https://doi.org/10.1016/S0255-0857(21)02472-5

Kestle JR, Riva-Cambrin J, Wellons JC, Kulkarni AV, Whitehead WE, Walker ML, et al. A standardized protocol to reduce cerebrospinal fluid shunt infection: The hydrocephalus clinical research network quality improvement initiative. J Neurosurg Pediatr. 2011;8(1):22-9. https://doi.org/10.3171/2011.4.PEDS10551 PMid:21721884 DOI: https://doi.org/10.3171/2011.4.PEDS10551

Gutierrez-Murgas Y, Snowden JN. Ventricular shunt infections: Immunopathogenesis and clinical management. J Neuroimmunol. 2014;276(1-2):1-8. http://dx.doi.org/10.1016/j.jneuroim.2014.08.006 PMid:25156073 DOI: https://doi.org/10.1016/j.jneuroim.2014.08.006

Lee HJ, Phi JH, Kim SK, Wang KC, Kim SJ. Papilledema in children with hydrocephalus: Incidence and associated factors. J Neurosurg Pediatr. 2017;19(6):627-31. https://doi.org/10.3171/2017.2.PEDS16561 PMid:28387641 DOI: https://doi.org/10.3171/2017.2.PEDS16561

Pople IK, Bayston R, Hayward RD. Infection of cerebrospinal fluid shunts in infants: A study of etiological factors. J Neurosurg. 1992;77(1):29-36. https://doi.org/10.3171/jns.1992.77.1.0029 PMid:1607969 DOI: https://doi.org/10.3171/jns.1992.77.1.0029

Kloos WE, Musselwhite MS. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl Microbiol. 1975;30(3):381-95. PMid:810086 DOI: https://doi.org/10.1128/am.30.3.381-395.1975

Orsi GB, d’Ettorre G, Panero A, Chiarini F, Vullo V, Venditti M. Hospital-acquired infection surveillance in a neonatal intensive care unit. Am J Infect Control. 2009;37(3):201-3. https://doi.org/10.1016/j.ajic.2008.05.009 PMid:19059676 DOI: https://doi.org/10.1016/j.ajic.2008.05.009

Lim WH, Lien R, Huang YC, Chiang MC, Fu RH, Chu SM, et al. Prevalence and pathogen distribution of neonatal sepsis among very-low-birth-weight infants. Pediatr Neonatol. 2012;53(4):228-34. https://doi.org/10.1016/j.pedneo.2012.06.003 PMid:22964280 DOI: https://doi.org/10.1016/j.pedneo.2012.06.003

Wang X, Mallard C, Levy O. Potential role of coagulase-negative Staphylococcus infection in preterm brain injury. Adv Neuroimmune Biol. 2012;3:41-8. DOI: https://doi.org/10.3233/NIB-2012-012034

Healy CM, Hulten KG, Palazzi DL, Campbell JR, Baker CJ. Emergence of new strains of methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit. Clin Infect Dis. 2004;39(10):1460-6. https://doi.org/10.1086/425321 PMid:15546082 DOI: https://doi.org/10.1086/425321

Nadaf MI, Lima L, Stranieri I, Takano OA, Carneiro-Sampaio M, Palmeira P. Passive acquisition of anti-Staphylococcus aureus antibodies by newborns via transplacental transfer and breastfeeding, regardless of maternal colonization. Clinics. 2016;71(12):687-94. DOI: https://doi.org/10.6061/clinics/2016(12)02

Belderbos ME, Levy O, Meyaard L, Bont L. Plasma-mediated immune suppression: A neonatal perspective. Pediatr Allergy Immunol. 2013;24(2):102-13. https://doi.org/10.1111/pai.12023 Mid:23173652 DOI: https://doi.org/10.1111/pai.12023

Levy O, Coughlin M, Cronstein BN, Roy RM, Desai A, Wessels MR. The adenosine system selectively inhibits TLR-mediated TNF-α _production in the human newborn. J Immunol. 2006;177(3):1956-66. https://doi.org/10.4049/jimmunol.177.3.1956 PMid:16849509 DOI: https://doi.org/10.4049/jimmunol.177.3.1956

Angelone DF, Wessels MR, Coughlin M, Suter EE, Valentini P, Kalish LA, et al. Innate immunity of the human newborn is polarized toward a high ratio of IL-6/TNF-α _production in vitro and in vivo. Pediatr Res. 2006;60(2):205-9. https://doi.org/10.1203/01.pdr.0000228319.10481.ea PMid:16864705 DOI: https://doi.org/10.1203/01.pdr.0000228319.10481.ea

Kochan T, Singla A, Tosi J, Kumar A. Toll-like receptor 2 ligand pretreatment attenuates retinal microglial inflammatory response but enhances phagocytic activity toward Staphylococcus aureus. Infect Immun. 2012;80(6):2076-88. https://doi.org/10.1128/IAI.00149-12 PMid:22431652 DOI: https://doi.org/10.1128/IAI.00149-12

Fux C, Quigley M, Worel A, Post C, Zimmerli S, Ehrlich G, et al. Biofilm-related infections of cerebrospinal fluid shunts. Clin Microbiol Infect. 2006;12(4):331-7. https://doi.org/10.1111/j.1469-0691.2006.01361.x PMid:16524409 DOI: https://doi.org/10.1111/j.1469-0691.2006.01361.x

Walters BC, Hoffman HJ, Hendrick EB, Humphreys RP. Cerebrospinal fluid shunt infection. Influences on initial management and subsequent outcome. J Neurosurg. 1984;60(5):1014-21. https://doi.org/10.3171/jns.1984.60.5.1014 PMid:6716136 DOI: https://doi.org/10.3171/jns.1984.60.5.1014

Conen A, Raabe A, Schaller K, Fux CA, Vajkoczy P, Trampuz A. Management of neurosurgical implant-associated infections. Swiss Med Wkly. 2020;150(1):w20208. https://doi.org/10.4414/smw.2020.20208 PMid:32329803 DOI: https://doi.org/10.4414/smw.2020.20208

Akdag O. Management of exposed ventriculoperitoneal shunt on the scalp in pediatric patients. Child’s Nerv Syst. 2018;34(6):1229-33. https://doi.org/10.1007/s00381-017-3702-9 PMid:29396717 DOI: https://doi.org/10.1007/s00381-017-3702-9

Tamber MS, Klimo P, Mazzola CA, Flannery AM. Pediatric hydrocephalus: Systematic literature review and evidence-based guidelines. Part 8: Management of cerebrospinal fluid shunt infection. J Neurosurg Pediatr. 2014;14(1):60-71. https://doi.org/10.3171/2014.7.PEDS14328 PMid:25988784 DOI: https://doi.org/10.3171/2014.7.PEDS14328

Ratilal B, Costa J, Sampaio C. Antibiotic prophylaxis for surgical introduction of intracranial ventricular shunts: A systematic review. J Neurosurg Pediatr. 2008;1(1):48-56. https://doi.org/10.3171/PED-08/01/048 PMid:18352803 DOI: https://doi.org/10.3171/PED-08/01/048

Downloads

Published

2022-02-15

How to Cite

1.
Bastian RA, Pramusinto H, Basuki E, Marianne M. Ventriculoperitoneal Shunt Infection: A Study about Age as a Risk Factor in Hydrocephalus Pediatrics. Open Access Maced J Med Sci [Internet]. 2022 Feb. 15 [cited 2024 Apr. 26];10(B):314-9. Available from: https://oamjms.eu/index.php/mjms/article/view/8251

Most read articles by the same author(s)