Serum HIF-1α Levels, miR-210 Expressions, and Reactive Oxygen Species Levels in Early Abortion and Normal Pregnancy

Authors

  • Joserizal Serudji Department of Obstetrics and Gynecology, Fetomaternal Division, Medical Faculty, Andalas University, Padang, West Sumatera, Indonesia
  • Nuzulia Irawati Department of Parasitology, Medical Faculty, Andalas University, Padang, West Sumatera, Indonesia
  • Johanes Cornelius Mose Department of Obstetrics and Gynecology, Fetomaternal Division, Universitas Padjadjaran, Bandung, Indonesia
  • Hirowati Ali Department of Biochemical Science, Medical Faculty, Andalas University, Padang, West Sumatera, Indonesia
  • Yusrawati Yusrawati Department of Obstetrics and Gynecology, Fetomaternal Division, Medical Faculty, Andalas University, Padang, West Sumatera, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.9325

Keywords:

HIF-1ɑ, miR-210, ROS, Early abortion, Normal pregnancy

Abstract

Background: The blastocyst implants in a relatively hypoxic state. Hypoxic state triggers hypoxia-inducible factor-1α (HIF-1ɑ) production, upregulates the transcription factor miR-210, and stimulates reactive oxygen species (ROS) production by trophoblast cells. HIF-1α also increases the expression of miR-210. High expression of micro-RNA 210 (miR-210) suppresses mitochondrial respiration, increasing ROS production. High level of ROS may result in DNA damage or cell disfunction, thereby impaired trophoblast invasion, leading to early abortion. This study aims to determine the differences of serum HIF-1ɑ levels, miR-210 expressions, and ROS levels between early abortion and normal pregnancy.

Method: This cross-sectional comparative study was conducted in Dr. M. Djamil Hospital Padang, Andalas University Hospital, and 5 Public Health Centers in Padang. Fifty-patients with gestational age less than 12 weeks (25 early abortions and 25 normal pregnancies) were included in this study. All samples were tested for HIF-1ɑ and ROS level using enzyme-linked immunosorbent assay (ELISA) method, and miR-210 expression using real-time polymerase chain reaction (PCR) technique. Spearman correlation and  Mann Whitney test. was used in this study.

Results: Both study groups were equivalent in terms of age, gestational age, and gravidity (p = 0.51, 0.453 and 1.00). The median of HIF-1ɑ level, miR-210 expression, and ROS level were higher in early abortions than normal pregnancies i.e (3.73 vs 3.42) ng/mL (p = 0.016), (43.55 vs 17.85) copies/ng (p = 0.027), and (1.36 vs 1.20) ng/mL (p = 0.003). The coefficient correlations were 0.16 between HIF-1ɑ level and miR-210 expression (p=0.267), 0.46 between HIF-1ɑ level and ROS level (p=0.001), and 0.18 between miR-210 expression and ROS level (p=0.207).

Conclusion: HIF-1ɑ level, miR-210 expression, and ROS level were associated with early abortion. HIF-1ɑ level has a correlation with ROS level.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Cunningham GF, Leveno KJ, Bloom SL, Hauth JC, Rouse DJ, Spong CY. Williams Obstetrics. 25th ed. New York: McGraw Hill Companies; 2015.

Velicky P, Knöfler M, Pollheimer J. Function and control of human invasive trophoblast subtypes: Intrinsic vs. maternal control. Cell Adh Migr. 2016;10(1-2):154-62. https://doi.org/10.1080/19336918.2015.1089376 PMid:26418186 DOI: https://doi.org/10.1080/19336918.2015.1089376

Horii M, Li Y, Wakeland AK, Pizzo DP, Nelson KK, Sabatini K, et al. Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease. Proc Natl Acad Sci U S A. 2016;113(27):E3882-91. https://doi.org/10.1073/pnas.1604747113 PMid:27325764 DOI: https://doi.org/10.1073/pnas.1604747113

Chakraborty D, Cui W, Rosario GX, Scott RL, Dhakal P, Renaud SJ, et al. HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia. Proc Natl Acad Sci U S A. 2016;113(46):E7212-21. https://doi.org/10.1073/pnas.1612626113 PMid:27807143 DOI: https://doi.org/10.1073/pnas.1612626113

Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: Applications and therapies. Biomed Res Int. 2015;2015:549412. https://doi.org/10.1155/2015/549412 PMid:26146622 DOI: https://doi.org/10.1155/2015/549412

Wu F, Tian FJ, Lin Y. Oxidative stress in placenta: Health and diseases. Biomed Res Int. 2015;2015:293271. https://doi.org/10.1155/2015/293271 PMid:26693479 DOI: https://doi.org/10.1155/2015/293271

Lee JW, Ko J, Ju C, Eltzschig HK. Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med. 2019;51(6):1-13. https://doi.org/10.1038/s12276-019-0235-1 PMid:31221962 DOI: https://doi.org/10.1038/s12276-019-0235-1

Biró O, Fóthi Á, Alasztics B, Nagy B, Orbán TI, Rigó J Jr. Circulating exosomal and argonaute-bound microRNAs in preeclampsia. Gene. 2019;692:138-44. https://doi.org/10.1016/j.gene.2019.01.012 PMid:30659946 DOI: https://doi.org/10.1016/j.gene.2019.01.012

Anton L, Olarerin-George AO, Schwartz N, Srinivas S, Bastek J, Hogenesch JB, et al. miR-210 inhibits trophoblast invasion and is a serum biomarker for preeclampsia. Am J Pathol. 2013;183(5):1437-45. https://doi.org/10.1016/j.ajpath.2013.07.021 PMid:24035613 DOI: https://doi.org/10.1016/j.ajpath.2013.07.021

Thomas LW, Ashcroft M. Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell Mol Life Sci. 2019;76(9):1759-77. https://doi.org/10.1007/s00018-019-03039-y PMid:30767037 DOI: https://doi.org/10.1007/s00018-019-03039-y

Qin Q, Furong W, Baosheng L. Multiple functions of hypoxiaregulated miR-210 in cancer. J Exp Clin Cancer Res. 2014;33(1):50. https://doi.org/10.1186/1756-9966-33-50 PMid:24909053 DOI: https://doi.org/10.1186/1756-9966-33-50

Guan Y, Song X, Sun W, Wang Y, Liu B. Effect of hypoxiainduced microRNA-210 expression on cardiovascular disease and the underlying Mechanism. Oxid Med Cell Longev. 2019;2019:4727283. https://doi.org/10.1155/2019/4727283 PMid:31249644 DOI: https://doi.org/10.1155/2019/4727283

Dobierzewska A, Palominos M, Sanchez M, Dyhr M, Helgert K, Venegas-Araneda P, et al. Impairment of angiogenic sphingosine kinase-1/sphingosine-1-phosphate receptors pathway in preeclampsia. PLoS One. 2016;11(6):e0157221. https://doi.org/10.1371/journal.pone.0157221 PMid:27284992 DOI: https://doi.org/10.1371/journal.pone.0157221

Chan SY, Zhang YY, Hemann C, Mahoney CE, Zweier JL, Loscalzo J. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009;10(4):273-84. https://doi.org/10.1016/j.cmet.2009.08.015 PMid:19808020 DOI: https://doi.org/10.1016/j.cmet.2009.08.015

Mendes S, Timóteo-Ferreira F, Almeida H, Silva E. New insights into the process of placentation and the role of oxidative uterine microenvironment. Oxid Med Cell Longev. 2019;2019:9174521. https://doi.org/10.1155/2019/9174521 PMid:31341539 DOI: https://doi.org/10.1155/2019/9174521

Rath G, Aggarwal R, Jawanjal P, Tripathi R, Batra A. HIF-1 alpha and placental growth factor in pregnancies complicated with preeclampsia: A qualitative and quantitative analysis. J Clin Lab Anal. 2016;30(1):75-83. https://doi.org/10.1002/jcla.21819 PMid:25545166 DOI: https://doi.org/10.1002/jcla.21819

Matsubara K. Hypoxia in the pathogenesis of peeclampsia. Hypertens Res Pregnancy 2017;5:46-51. https://doi.org/10.14390/jsshp.HRP2017-014 DOI: https://doi.org/10.14390/jsshp.HRP2017-014

Albers RE, Kaufman MR, Natale BV, Keoni C, Kulkarni-Datar K, Min S, et al. Trophoblast-specific expression of Hif-1α results in preeclampsia-like symptoms and fetal growth restriction. Sci Rep. 2019;9(1):2742. https://doi.org/10.1038/s41598-019-39426-5 PMid:30808910 DOI: https://doi.org/10.1038/s41598-019-39426-5

Luo R, Wang Y, Xu P, Cao G, Zhao Y, Shao X, et al. Hypoxia-inducible miR-210 contributes to preeclampsia via targeting thrombospondin type I domain containing 7A. Sci Rep. 2016;6:19588. https://doi.org/10.1038/srep19588 PMid:26796133 DOI: https://doi.org/10.1038/srep19588

Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2018;16(1):80. https://doi.org/10.1186/s12958-018-0391-5 PMid:30126412 DOI: https://doi.org/10.1186/s12958-018-0391-5

Koushki M, Amiri Dash Atan N, Omidi-Ardali H, Rezaei Tavirani M. Assessment of correlation between miR-210 expression and pre-eclampsia risk: A meta-analysis. Rep Biochem Mol Biol. 2018;7(1):94-101. PMid:30324123

Han L, Zhao Y, Jin Z, Li Y, Zou L. Correlation of miRNA and VEGF expression with the outcome of early-onset severe preeclampsia in patients receiving expectant treatment. Int J Clin Exp Pathol. 2018;11(4):2137-41. PMid:31938323

Wang H, Zhao Y, Luo R, Bian X, Wang Y, Shao X, et al. A positive feedback self-regulatory loop between miR-210 and HIF-1α mediated by CPEB2 is involved in trophoblast syncytialization: Implication of trophoblast malfunction in preeclampsia†. Biol Reprod. 2020;102(3):560-70. https://doi.org/10.1093/biolre/ioz196 PMid:31616934 DOI: https://doi.org/10.1093/biolre/ioz196

Mannaerts D, Faes E, Cos P, Briedé JJ, Gyselaers W, Cornette J, et al. Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PLoS One. 2018;13(9):e0202919. https://doi.org/10.1371/journal.pone.0202919 PMid:30204759 DOI: https://doi.org/10.1371/journal.pone.0202919

Shaikh SA, Vijayaraghavan R, Kumar DS, Manidip P. A comparative study of novel biomarkers on preeclampsia in relation to body mass index. Int J Res Pharm Sci. 2020;11(1):913-20. https://doi.org/10.26452/ijrps.v11i1.1914 DOI: https://doi.org/10.26452/ijrps.v11i1.1914

Chamy VM, Lepe J, Catalán A, Retamal D, Escobar JA, Madrid EM. Oxidative stress is closely related to clinical severity of pre-eclampsia. Biol Res. 2006;39(2):229-36. https://doi.org/10.4067/s0716-97602006000200005 PMid:16874398 DOI: https://doi.org/10.4067/S0716-97602006000200005

Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ. Concept and connotation of oxidative stress in preeclampsia. J Lab Physicians. 2018;10(3):276-82. https://doi.org/10.4103/JLP.JLP_26_18 PMid:30078962 DOI: https://doi.org/10.4103/JLP.JLP_26_18

Turrentine JE. Clinical Protocols in Obstetrics and Gynecology. London: Informa Healthcare; 2008. p. 1-4. DOI: https://doi.org/10.3109/9781439802021

Sasaki T, Awaji T, Shimada K, Sasaki H. Increase of reactive oxygen species generation in cerebral cortex slices after the transiently enhanced metabolic activity. Neurosci Res. 2017;123:55-64. https://doi.org/10.1016/j.neures.2017.04.020 PMid:28499835 DOI: https://doi.org/10.1016/j.neures.2017.04.020

Downloads

Published

2022-08-04

How to Cite

1.
Serudji J, Irawati N, Mose JC, Ali H, Yusrawati Y. Serum HIF-1α Levels, miR-210 Expressions, and Reactive Oxygen Species Levels in Early Abortion and Normal Pregnancy. Open Access Maced J Med Sci [Internet]. 2022 Aug. 4 [cited 2024 Apr. 18];10(B):1779-83. Available from: https://oamjms.eu/index.php/mjms/article/view/9325

Issue

Section

Gynecology and Obstetrics

Categories

Most read articles by the same author(s)

1 2 > >>