Effect of Thymoquinone and Transforming Growth Factor-β1 on the Cell Viability of Nasal Polyp-Derived Fibroblast

Authors

  • Ferryan Sofyan Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia; Philosophy Doctor In Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Delfitri Munir Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia; Philosophy Doctor In Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Imam Budi Putra Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Retno Sulistyo Wardani Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Restu Syamsul Hadi Department of Anatomy, Faculty of Medicine, YARSI University, Jakarta, Indonesia
  • Devira Zahara Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Rosita Juwita Sembiring Philosophy Doctor In Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia; Department of Clinical Pathology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Andrina Y. M. Rambe Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Taufik Ashar Faculty of Public Health, Universitas Sumatra Utara, Medan, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.9516

Keywords:

Thymoquinone, Transforming Growth Factor-β1, Nasal Polyp, Fibroblast

Abstract

BACKGROUND: Nasal polyps are benign masses in the nasal cavity and the abnormal growth of sinonasal tissue due to a chronic inflammatory process. Many fibroblasts populate the nasal polyp stroma release cytokines such as Transforming Growth Factor (TGF) and producing a variety of cytokines resulting in inflammatory cell infiltration. Thymoquinone (TQ) is the main active component in Nigella sativa oil and has the ability to reduces cell viability in many cancer cell line.

AIM: The purpose of this study was to determine the effect of TQ and TGF-β1 on cell viability of Nasal Polyp-Derived Fibroblast.

MATERIALS AND METHODS: Nasal polyp-derived fibroblasts were isolated from nasal polyp specimen and treated with various concentrations of TQ at 1–1000 μM and TGF-β1 at 5 ng/ml to determine the cell viability using the Cell Counting Kit-8 assay after 48 h incubation.

RESULTS: TQ significantly reduced the viability of nasal polyp fibroblast cells to 72.49% at 20 μM and reduced to 5% at 50 μM until 1000 μM with IC50 at 21.93 μM. TGF-β1 at 5 ng/ml significantly reduced the viability of nasal polyp fibroblast cells to 81.96% and TGF-β1 appears to have a dual effect that depends on the concentration of TQ.

CONCLUSION: This study proved that TQ and TGF-β1 were able to reduce the viability of nasal polyp fibroblast cells.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Wu F, Ma Y, Wang J, Ou H, Dang H, Zheng Y, et al. Bleomycin A5 suppresses Drp1-mediated mitochondrial fission and induces apoptosis in human nasal polyp-derived fibroblasts. Int J Mol Med. 2021;47(1):346-60. https://doi.org/10.3892/ijmm.2020.4797 PMid:33236140 DOI: https://doi.org/10.3892/ijmm.2020.4797

Hopkins C. Chronic rhinosinusitis with nasal polyps. N Eng J Med. 2019;381(1):55-63. https://doi.org/10.1056/nejmcp1800215 PMid:31269366 DOI: https://doi.org/10.1056/NEJMcp1800215

Wu F, Tian P, Ma Y, Wang J, Ou H, Zou H. Induction of apoptosis in nasal polyp-derived fibroblasts by bleomycin A5 in vitro. Mol Med Rep. 2018;17:5384-9. https://doi.org/10.3892/mmr.2018.8540 PMid:29393498 DOI: https://doi.org/10.3892/mmr.2018.8540

Li L, Zhang X, Li X, Chengfang LV, Yu H, Xu M, et al. TGF-β1 inhibits the apoptosis of pulmonary arterial smooth muscle cells and contributes to pulmonary vascular medial thickening via the PI3K/Akt pathway. Mol Med Rep. 2016;13(3):2751-6. https://doi.org/10.3892/mmr.2016.4874 PMid:26861477 DOI: https://doi.org/10.3892/mmr.2016.4874

Balsalobre L, Pezato R, Perez-Novo C, Alves MT, Santos RP, Bachert C, et al. Epithelium and stroma from nasal polyp mucosa exhibits inverse expression of TGF-β1 as compared with healthy nasal mucosa. J Otolaryngol Head Neck Surg. 2013;42(1):29. https://doi.org/10.1186/1916-0216-42-29 PMid:23663486 DOI: https://doi.org/10.1186/1916-0216-42-29

Sun Q, Wu Y, Zhao F, Wang J. Maresin 1 inhibits transforming growth factor-β1-induced proliferation, migration and differentiation in human lung fibroblasts. Mol Med Rep. 2017;16(2):1523-9. https://doi.org/10.3892/mmr.2017.6711 PMid:29067437 DOI: https://doi.org/10.3892/mmr.2017.6711

Ben-Lulu S, Pollak Y, Mogilner J, Bejar J, Coran AG, Sukhotnik I. Dietary transforming growth factor-beta 2 (TGF-β2) supplementation reduces methotrexate-induced intestinal mucosal injury in a rat. PLoS One. 2012;7(9):e45221. https://doi.org/10.1371/journal.pone.0045221 PMid:22984629 DOI: https://doi.org/10.1371/journal.pone.0045221

Ballout F, Habli Z, Rahal ON, Fatfat M, Gali-Muhtasib H. Thymoquinon-based nanotechnology for cancer therapy: Promises and challenges. Drug Discov Today. 2018;23(5):1089‐98. https://doi.org/10.1016/j.drudis.2018.01.043 PMid:29374534 DOI: https://doi.org/10.1016/j.drudis.2018.01.043

Schneider-Stock R, Fakhoury IH, Zaki AM, El‐Baba CO, Gali‐Muhtasib HU. Thymoquinone: Fifty years of success in the battle against cancer models. Drug Discov Today. 2014;19(1):18‐30. https://doi.org/10.1016/j.drudis.2013.08.021 PMid:24001594 DOI: https://doi.org/10.1016/j.drudis.2013.08.021

Kus G, Ozkurt M, Kabadere S, Erkasap N, Goger G, Demirci F. Antiproliferative and anti-apoptotic effect of thymoquinone on cancer cells in vitro. Bratisl Lek Listy. 2018;119(5):312-6. https://doi.org/10.4149/BLL_2018_059 PMid:29749248 DOI: https://doi.org/10.4149/BLL_2018_059

Quinlan A. Assessing Viability and Proliferation. United States: Bio-Rad; 2016.

Meng J, Zhou P, Liu Y, Liu F, Yi X, Holtappels G, et al. The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling. PLoS One. 2013;8(12):82373. https://doi.org/10.1371/journal.pone.0082373 PMid:24340021 DOI: https://doi.org/10.1371/journal.pone.0082373

Lee SA, Yang HW, Um JY, Shin JM, Park IH, Lee HM. Vitamin D attenuates myofibroblast differentiation and extracellular matrix accumulation in nasal polyp derived fibroblasts through smad2/3 signaling pathway. Sci Rep. 2017;7:7299. https://doi.org/10.1038/s41598-017-07561-6 DOI: https://doi.org/10.1038/s41598-017-07561-6

Shin SH, Ye MK, Lee DW, Che MH. Effect of acacia honey on transforming growth factor-β1 induced myofibroblast differentiation and matrix metalloproteinase 9 production in nasal polyp fibroblasts. Am J Rhinol Allergy. 2019;33(5):483-9. https://doi.org/10.1177/1945892419843702 PMid:30997818 DOI: https://doi.org/10.1177/1945892419843702

Park IH, Kang JH, Shin JM, Lee HM. Trichostatin a inhibits epithelial mesenchymal transition induced by TGF-β1 in airway epithelium. PLoS One. 2016;11(8):0162058. https://doi.org/10.1371/journal.pone.0162058 PMid:27571418 DOI: https://doi.org/10.1371/journal.pone.0162058

Zhang L, Bai Y, Yang Y. Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB. Oncol Lett. 2016;12:2840-5. https://doi.org/10.3892/ol.2016.4971 PMid:27698868 DOI: https://doi.org/10.3892/ol.2016.4971

Sahak MK, Kabir N, Abbas G, Draman S, Hashim NH, Hasan Adli DS. The role of Nigella sativa and its active constituents in learning and memory. Evid Based Complement Altern Med. 2016;2016:6075679. https://doi.org/10.1155/2016/6075679 PMid:27022403 DOI: https://doi.org/10.1155/2016/6075679

Gupta B, Ghosh KK, Gupta RC. Thymoquinone. In: Gupta RC, editors. Nutraceuticals. Ch. 39. Netherlands: Elsevier; 2016. p. 541-8. DOI: https://doi.org/10.1016/B978-0-12-802147-7.00039-5

Wang C, Lou H, Wang X, Wang Y, Fan E, Li Y, et al. Effect of budesonide transnasal nebulization in patients with eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2015;135(4):922-9.e6. https://doi.org/10.1016/j.jaci.2014.10.018 PMid:25483598 DOI: https://doi.org/10.1016/j.jaci.2014.10.018

Li W, Zhou J, Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed Rep. 2015;3(5):617-20. https://doi.org/10.3892/br.2015.481 PMid:26405534 DOI: https://doi.org/10.3892/br.2015.481

Bai T, Lian LH, Wu YL, Wan Y, Nan JX. Thymoquinone attenuates

liver fifibrosis via PI3K and TLR4 signaling pathways in activated

hepatic stellate cells. Int Immunopharmacol. 2013;15(2):275-81.

https://doi.org/10.1016/j.intimp.2012.12.020 DOI: https://doi.org/10.1016/j.intimp.2012.12.020

PMid:23318601

Ismail N, Abdele-Mottaleb Y, Ahmed AA, El-Maraghy NN. Novel combination of thymoquinone and resveratrol enhances anticancer effect on hepatocellular carcinoma cell line. Futur J Pharm Sci. 2018;4:41-6. https://doi.org/10.1016/j.fjps.2017.08.001 DOI: https://doi.org/10.1016/j.fjps.2017.08.001

Motaghed M, Al-Hassan FM, Hamid SS. Cellular responses with thymoquinone treatment in human breast cancer cell line MCF-7. Pharmacogny Res. 2013;5(3):200-6. https://doi.org/10.4103/0974-8490.112428 PMid:23900121 DOI: https://doi.org/10.4103/0974-8490.112428

Kamiloglu S, Sari G, Ozdal T, Capanoglu E. Guidelines for cell viability assays. Food Front. 2020;1:332-49. https://doi.org/10.1002/fft2.44 DOI: https://doi.org/10.1002/fft2.44

Adan A, Kiraz Y, Baran Y. Cell proliferation and cytotoxicity assays. Curr Pharm Biotechnol. 2016;17(14):1213-21. https://doi.org/10.2174/1389201017666160808160513 PMid:27604355 DOI: https://doi.org/10.2174/1389201017666160808160513

Aslanturk OS. In vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. Ch. 1. London: IntechOpen. 2018. DOI: https://doi.org/10.5772/intechopen.71923

Khan MA, Tania M, Fu S, Fu J. Thymoquinone as an anticancer molecule: From basic research to clinical investigation. Oncotarget. 2017;8(31):51907-19. https://doi.org/10.18632/oncotarget.17206 PMid:28881699 DOI: https://doi.org/10.18632/oncotarget.17206

Samarghandian S, Azimi-Nezhad M, Farkhondeh T. Thymoquinone-induced antitumor and apoptosis in human lung adenocarcinoma cells. J Cell Physiol. 2019;234:10421-31. https://doi.org/10.1002/jcp.27710 PMid:30387147 DOI: https://doi.org/10.1002/jcp.27710

Jung H, Lee DS, Park SK, Choi JS, Jung WK, Park WS, et al. Fucoxanthin inhibits myofibroblast differentiation and extracellular matrix production in nasal polyp derived fibroblasts via modulation of smad-dependent and smad-independent signaling pathways. Mar Drugs. 2018;16(9):323. https://doi.org/10.3390/md16090323 PMid:30201895 DOI: https://doi.org/10.3390/md16090323

Radajewski K, Wierzchowska M, Grzanka D, Antosik P, Zdrenka M, Burduk P. Tissue remodelling in chronic rhinosinusitisreview of literature. Otolaryngol Pol. 2019;73(5):1-4. https://doi.org/10.5604/01.3001.0013.4121 PMid:31701902

Cho JS, Kang JH, Shin JM, Park IH, Lee HM. Inhibitory effect of delphinidin on extracellular matrix production via the MAPK/NF-κB pathway in nasal polyp-derived fibroblasts. Allergy Asthma Immunol Res. 2015;7(3):276-82. https://doi.org/10.4168/aair.2015.7.3.276 PMid:25749779 DOI: https://doi.org/10.4168/aair.2015.7.3.276

Zhang Q, Yu N, Lee C. Mysteries of TGF-β paradox in benign and malignant cell. Front Oncol. 2014;4:94. https://doi.org/10.3389/fonc.2014.00094 PMid:24860782 DOI: https://doi.org/10.3389/fonc.2014.00094

Downloads

Published

2022-04-17

How to Cite

1.
Sofyan F, Munir D, Putra IB, Wardani RS, Hadi RS, Zahara D, Sembiring RJ, Rambe AYM, Ashar T. Effect of Thymoquinone and Transforming Growth Factor-β1 on the Cell Viability of Nasal Polyp-Derived Fibroblast. Open Access Maced J Med Sci [Internet]. 2022 Apr. 17 [cited 2024 Feb. 26];10(B):1392-8. Available from: https://oamjms.eu/index.php/mjms/article/view/9516

Issue

Section

Ear, Nose and Throat

Categories

Most read articles by the same author(s)

1 2 3 > >>