Correlations between Insulin Receptor Substrate-1 with Phosphoinositide 3-Kinase and P38 Mitogen-Activated Protein Kinase Levels after Treatment of Diabetic Rats with Puguntano (Curanga Fel-Terrae [Merr.]) Leaf Extract

Authors

  • Santi Syafril Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, H. Adam Malik General Hospital, Medan, Indonesia
  • Dharma Lindarto Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, H. Adam Malik General Hospital, Medan, Indonesia
  • Aznan Lelo Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Rosita Juwita Sembiring Department of Clinical Pathology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Awaluddin Saragih Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2019.218

Keywords:

Puguntano, IRS-1, PI3K, p38 MAPK, T2DM

Abstract

BACKGROUND: Defects in post-receptor insulin signalling are the major cause of insulin resistance in type 2 diabetes mellitus (T2DM).

AIM: This study aimed to investigate the correlations between insulin receptor substrate (IRS)-1 with phosphoinositide 3-kinase (PI3K) and p38 mitogen-activated protein kinase (MAPK) levels after puguntano (Curanga fel-terrae [Merr.]) leaf extract treatment in a rat model of T2DM.

METHODS: A combination of high-fat diet-feeding (HFD) and multiple low dose intraperitoneal injections of streptozotocin was used to induced T2DM in 48 Wistar rats, which were then randomly divided into control and treatment groups (n = 24 per group). Puguntano leaf extract was administered to the treatment group once daily (200 mg/kg.bw) for 10 days. IRS-1, PI3K and p38 MAPK levels were measured in skeletal muscle using sandwich ELISAs in control group after becoming T2DM and in the treatment group after 10 days of puguntano treatment. Data were analysed using the Wilcoxon test and Spearman’s correlation.

RESULTS: IRS-1, PI3K and p38 MAPK levels were significantly higher in the treatment group than in the control group. There were also significant positive correlations between IRS-1 with PI3K and p38 MAPK levels (r = 0.375, p = 0.035; r = 0.552, p = 0.003; respectively) after the treatment.

CONCLUSION: This study demonstrated significant positive correlations between IRS-1 with PI3K and p38 MAPK levels after puguntano leaf extract treatment of T2DM rats.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Tian C, Chang H, La X, Li J. Wushenziye Formula Improves Skeletal Muscle Insulin Resistance in Type 2 Diabetes Mellitus via PTP1B-IRS1-Akt-GLUT4 Signaling Pathway. Evid-Based Compl Alt. 2017; 1-8. https://doi.org/10.1155/2017/4393529

Song C, Liu D, Yang S, Cheng L, Xing E, Chen Z. Sericin enhances the insulinâ€PI3K/AKT signalling pathway in the liver of a type 2 diabetes rat model. Exp Ther Med. 2018; 16:3345-52. https://doi.org/10.3892/etm.2018.6615

Horita S, Nakamura M, Suzuki M, Satoh N, Suzuki A, Seki G. Selective Insulin Resistance in the Kidney. Bio Med Res Intern. 2016; 1-8. https://doi.org/10.1155/2016/5825170

Bilous, R and Donnelly, R. Normal physiology of insulin secretion and action. In: Handbook of Diabetes: Blackwell Publishing Ltd 4th edition, 2010; 22-34. https://doi.org/10.1002/9781444391374.ch5

Khorami SAH, Movahedi A, Huzwah K, Sokhini AMM. PI3K/Akt pathway in modulating glucose homeostasis and its alteration in diabetes. Annals of Medical and Biomedical Sciences. 2015; 1(2):46-55.

Guo X, Yoshitomi H, Gao M, Qin L, Duan Y, Sun W, et al. Guava leaf extracts promote glucose metabolism in SHRSP. Z-Leprfa/Izm rats by improving insulin resistance in skeletal muscle. BMC Complement Altern Med. 2013; 13(52):1-8. https://doi.org/10.1186/1472-6882-13-52

Vergotine Z. Molecular investigation of genetic factors associated with insulin resistance and obesity in a South African population. [Desertation]. Stellenbosch University. 2015.

Ho RC, Alcazar O, Fujii N, Hirshman MF, Goodyear LJ. p38 MAPK regulation of glucose transporter expression and glucose uptake in L6 myotubes and mouse skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2003; 286(2):R342-9. https://doi.org/10.1152/ajpregu.00563.2003

Talbot NA, Wheeler-Jones C.P, Cleasby ME. Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated skeletal muscle insulin resistance. Mol Cell Endocrinol. 2014; 393(1-2):129-42. https://doi.org/10.1016/j.mce.2014.06.010

Hussain SA and Marouf BH. Flavonoids as alternatives in treatment of type 2 diabetes mellitus. Acad J Med Plants. 2013; 1(2):31-6.

Harahap U, Patilaya P, Marianne, Yuliasmi S, Husori DI, Prasetyo BE, et al. Phytochemical Profile of Ethanol Extract of The Puguntano Leaf (CurangaFel-Terrae [Lour].) which has Potential as Anti-asthma. National Seminar on Science & Technology V, Research Institute of Lampung University, 2013.

Kumari M and Jain S. Tannins. An antinutrient with positive effect to manage diabetes. Res J Recent Sci. 2012; 1(12):70-3.

Vinagayam, R and Xu, B. Antidiabetic properties of dietary flavonoids: a celluler mechanism review. Nutrition & Metabolism. 2015; 12(60):1-20. https://doi.org/10.1186/s12986-015-0057-7

Han JH, Tuan NQ, Park MH, Quan KT, Oh J, Heo KS, et al. Cucurbitane Triterpenoids from the Fruits of Momordica Charantia Improve Insulin Sensitivity and Glucose Homeostasis in Streptozotocinâ€Induced Diabetic Mice. Mol Nutr Food Res. 2018; 62(7):1-37. https://doi.org/10.1002/mnfr.201700769 PMid:29405623

Bhavsar SK, Foller M, Gu S, Vir S, Shah MB, Bhutani KK, et al. Involvement of the PI3K/AKT pathway in the hypoglycemic effects of saponins from Helicteresisora. J Ethnopharmacol. 2009; 126(3):386-96. https://doi.org/10.1016/j.jep.2009.09.027 PMid:19781620

Lindarto D, Machrina Y, Syafril S, Saragih A. The Effect of Puguntano (CurangaFel-Terrae [Lour.]) Extract on Adiponectin Receptor (Adipor) in Rats with Type 2 Diabetes Mellitus. Asian J Pharm Clin Res. 2019; 12(3):1-3.

Rajendran D, Nisha P, Arya D, Murthy J. Quercetin, a Lead Compound against Type 2 Diabetes Ameliorates Glucose Uptake via AMPK Pathway in Skeletal Muscle Cell Line. Front Pharmacol. 2017; 8(336):1-9. https://doi.org/10.3389/fphar.2017.00336

Zhang M, Lv XY, Li J, Xu ZG, Chen L. The Characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res. 2008; 1-9. https://doi.org/10.1155/2008/704045

Bitoska I, Krstevska B, Milenkovic T, Subeska-Stratrova S, Petrovski G, Mishevska SJ, et al. Effects of Hormone Replacement Therapy on Insulin Resistance in Postmenopausal Diabetic Women. Open Access Maced J Med Sci. 2016; 4(1):83-8. https://doi.org/10.3889/oamjms.2016.024 PMid:27275336 PMCid:PMC4884259

Kemenkes RI. Farmakope Herbal Indonesia Ed. I Suplemen II. Kemenkes RI Jakarta, 2013:106-7.

Brown AE, Palsgaard J, Borup R, Avery P, Gunn DA., Meyts PD, et al. p38 MAPK activation upregulates proinflammatory pathways in skeletal muscle cells from insulin-resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab. 2015; 308(1):E63-70. https://doi.org/10.1152/ajpendo.00115.2014

Xu P-T, Song Z, Zhang W-C, Jiao B, Yu Z-B. Impaired Translocation of GLUT4 Results in Insulin Resistance of Atrophic Soleus Muscle. Bio Med Res Int. 2015; 1-11. https://doi.org/10.1155/2015/291987

Lindarto D, Syafril S, Zein U, Saragih A. The Effect of Dhawalsan-1 (Curanga Fel-Terrae [Lour.]) Extract Versus Metformin on The Metabolic and Inflammatory Characteristics of Patients with Newly Diagnosed Type 2 Diabetes Mellitus. Asian J Pharm Clin Res. 2016; 9(1):225-8.

Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative Stress and the Etiology of Insulin Resistance and Type 2 Diabetes. Free Radic Biol Med. 2011; 51(5):993-9. https://doi.org/10.1016/j.freeradbiomed.2010.12.005 PMid:21163347 PMCid:PMC3071882

Cai S, Sunb W, Fane Y, Guof X, Xuf G, Xug T, et al. Effect of mulberry leaf (Folium Mori) on insulin resistance via IRS-1/PI3K/Glut-4 signalling pathway in type 2 diabetes mellitus rats. Pharm Biol. 2016; 54(11): 2685-91. https://doi.org/10.1080/13880209.2016.1178779 PMid:27158744

Jiang S, Ren D, Li J, Yuan G, Li H, Xu G, et al. Effects of compound K on hyperglycemia and insulin resistance in rats with type 2 diabetes mellitus. Fitoterapia. 2014; 95:58-64. https://doi.org/10.1016/j.fitote.2014.02.017 PMid:24613802

Eijaz S, Salim A, Waqar MA. Possible Molecular Targets of Cinnamon in the Insulin Signaling Pathway. J Biochem Tech. 2014; 5(2):708-17.

Niu W, Huang C, Nawaz Z, Levy M, Somwar R, Li D, et al. Maturation of the Regulation of GLUT4 Activity by p38 MAPK during L6 Cell Myogenesis. J Biol Chem. 2003; 278(20):17953-62. https://doi.org/10.1074/jbc.M211136200 PMid:12637564

Gehart H, Kumpf S, Ittner A, Ricci R. MAPK signaling in celluler metabolism: stress or wellness? EMBO reports. 2010; 11(11):834-40. https://doi.org/10.1038/embor.2010.160 PMid:20930846 PMCid:PMC2966959

Lawan A, Min K, Zhang L, Canfran-Duque A, Jurczak MJ, Camporez JPG, et al. Skeletal Muscle-Specific Deletion of MKP-1 Reveals a p38 MAPK/JNK/Akt Signaling Node That Regulates Obesity-Induced Insulin Resistance. Diabetes. 2018; 67(4):624-35. https://doi.org/10.2337/db17-0826 PMid:29317435 PMCid:PMC5860856

Published

2019-04-23

How to Cite

1.
Syafril S, Lindarto D, Lelo A, Sembiring RJ, Saragih A. Correlations between Insulin Receptor Substrate-1 with Phosphoinositide 3-Kinase and P38 Mitogen-Activated Protein Kinase Levels after Treatment of Diabetic Rats with Puguntano (Curanga Fel-Terrae [Merr.]) Leaf Extract. Open Access Maced J Med Sci [Internet]. 2019 Apr. 23 [cited 2024 Apr. 25];7(8):1247-51. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2019.218

Issue

Section

A - Basic Science

Most read articles by the same author(s)

1 2 3 > >>