Contemporary Dental Ceramic Materials, A Review: Chemical Composition, Physical and Mechanical Properties, Indications for Use

Authors

  • Emilija Bajraktarova-Valjakova Faculty for Dental Medicine, Ss Cyril and Methodius University of Skopje, Skopje
  • Vesna Korunoska-Stevkovska Faculty for Dental Medicine, Ss Cyril and Methodius University of Skopje, Skopje
  • Biljana Kapusevska Faculty for Dental Medicine, Ss Cyril and Methodius University of Skopje, Skopje
  • Nikola Gigovski Faculty for Dental Medicine, Ss Cyril and Methodius University of Skopje, Skopje
  • Cvetanka Bajraktarova-Misevska Faculty for Dental Medicine, Ss Cyril and Methodius University of Skopje, Skopje
  • Anita Grozdanov Faculty of Technology and Metallurgy, Ss Cyril and Methodius University of Skopje, Skopje

DOI:

https://doi.org/10.3889/oamjms.2018.378

Keywords:

CAD/CAM, glass-ceramics, zirconia, resin-matrix ceramic, chemical composition, mechanical properties

Abstract

BACKGROUND: The high esthetic expectations from the prosthodontic restorations have directed the qualitative development of the materials towards the all-ceramic materials that are capable of replacing porcelain-fused-to-metal systems.

AIM: This article reviews the literature covering the contemporary all-ceramic materials and systems with a focus on the chemical composition and materials’ properties; also it provides clinical recommendations for their use.

RESULTS: The glass-matrix ceramics and polycrystalline ceramics are presented, as well as recently introduced machinable materials, all-zirconia and resin-matrix ceramics. The specific properties of zirconia, such as transformation toughening, stabilisation of the crystallographic structure, low-temperature degradation and factors affecting the zirconia’s ageing, are emphasised.

CONCLUSION: The favourable properties of the resin-matrix ceramics, such as modulus of elasticity similar to dentin, shock-absorbing characteristics and high resilience and fracture resistance, are also covered in this article.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Bajraktarova Valjakova E, Guguvcevski Lj, Korunoska Stevkovska V, Gigovski N, Kapusevska B, Mijoska A, Bajevska J, Bajraktarova Misevska C, Grozdanov A. Dental ceramic materials, part I: Technological development of all-ceramic dental materials. Macedonian Stomatological Review. 2018; 41(1-2):30-4.

Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: Clinical and experimental considerations. Dent Mater. 2011; 27(1):83-96. https://doi.org/10.1016/j.dental.2010.10.024 PMid:21094996

Conrad HJ, Seong W-J, Pesun IJ. Current ceramic materials and systems with clinical recommendations: A systematic review. J Prosthet Dent. 2007; 98(5):389-404. https://doi.org/10.1016/S0022-3913(07)60124-3

Bajraktarova Valjakova E. [Evaluation of the bonding effectiveness of luting composites to different ceramic CAD/CAM materials - in vitro study] [dissertation]. Faculty of Dentistry, University Ss Cyril and Methodius; 2014. [Macedonian]

He LH, Swain M. A novel polymer infiltrated ceramic dental material. Dent Mater. 2011; 27(6):527-34. https://doi.org/10.1016/j.dental.2011.02.002 PMid:21371744

Silva LH, Lima E, Miranda RBP, Favero SS, Lohbauer U, Cesar PF. Dental ceramics: a review of new materials and processing methods. Braz Oral Res. 2017; 31(suppl):e58:133-46.

Gracis S, Thompson VP, Ferencz JL, Silva NRFA, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015; 28(3):227-35. https://doi.org/10.11607/ijp.4244 PMid:25965634

Barizon KT, Bergeron C, Vargas MA, Qian F, Cobb DS, Gratton DG, Geraldeli S. Ceramic materials for porcelain veneers. Part I: Correlation between translucency parameters and contrastratio. J Prosthet Dent. 2013; 110(5):397-401. https://doi.org/10.1016/j.prosdent.2013.06.008 PMid:23998620

Barizon KT, Bergeron C, Vargas MA, Qian F, Cobb DS, Gratton DG, Geraldeli S. Ceramic materials for porcelain veneers: part II. Effect of material, shade, and thickness on translucency. J Prosthet Dent. 2014; 112(4):864-70. https://doi.org/10.1016/j.prosdent.2014.05.016 PMid:24969410

Oh S, Shin SM, Kim H-J, Paek J, Kim S-J, Yoon TH, Kim S-Y. Influence of glass-based dental ceramic type and thickness with identical shade on the light transmittance and the degree of conversion of resin cement. Int J Oral Sci. 2018; 10(5):1-6. https://doi.org/10.1038/s41368-017-0005-7

Garvie RC, Hannink RH, Pascoe RT. Ceramic Steel? Nature. 1975; 258(5537):703-4. https://doi.org/10.1038/258703a0

Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater. 2004; 20(5):449-56. https://doi.org/10.1016/j.dental.2003.05.002 PMid:15081551

Monaco C. Zirconia in dentistry [dissertation]. Faculty of engineering: University of Bologna; 2014.

Turp V, Tuncelli B, Sen D, Goller G. Evaluation of hardness and fracture toughness, coupled with microstructural analysis, of zirconia ceramics stored in environments with different pH values. Dent Mater J. 2012; 31(6):891-902. https://doi.org/10.4012/dmj.2012-005 PMid:23207192

Coldea A. Chapter II: Literature review. In: Suitability of Polymer-Infiltrated-Ceramic-Networks for CAD/CAM based dental restorative materials [dissertation]. University of Otago, New Zealand; 2014.

Facenda JC, Borba M, Corazza PH. A literature review on the new polymer-infiltrated ceramic-network material (PICN). J Esthet Restor Dent. 2018 Feb 5. https://doi.org/10.1111/jerd.12370 PMid:29399950

Van Noort R. Introduction to dental materials. 3rd edn. Elsevier, Philadelphia 2007.

Ho GW, Matinlinna JP. Insights on ceramics as dental materials. Part I: Ceramic material types in dentistry. Silicon. 2011; 3(3):109-15. https://doi.org/10.1007/s12633-011-9078-7

Bajraktarova Valjakova E, Grozdanov A, Guguvcevski Lj, Korunoska-Stevkovska V, Kapusevska B, Gigovski N, Mijoska A, Bajraktarova Misevska C. Acid etching as surface treatment method for luting of glass-ceramic restorations, part I: Acids, application protocol and etching effectiveness. Open Access Maced J Med Sci. 2018; 6(3):568-73. https://doi.org/10.3889/oamjms.2018.147 PMid:29610622 PMCid:PMC5874387

Darvel BW. Materials science for dentistry. 8th edn. Hong Kong. 2006.

https://www.vitanorthamerica.com/datei.php?src=download/Support/Instructions-For-Use/Machinables/VITABLOCS-for-CEREC_inLab-Working-Instructions_1455E.pdf

Bajraktarova Valjakova E, De Munck J, Yoshihara K, Misevska C, Grozdanov A, Peumans M, Van Meerbeek B. Micro-morphological changes of various CAD-CAM blocks after different surface treatments. 47th Meeting of CED-IADR, Antalya, Turkey; 2015. Abstr. No. 0576.

Denry I. Recent advances in ceramics for dentistry. Crit Rev Oral Biol Med. 1996; 7(2):134-43. https://doi.org/10.1177/10454411960070020201

Shenoy A, Shenoy N. Dental ceramics: An update. J Conserv Dent. 2010; 13(4):195-203. https://doi.org/10.4103/0972-0707.73379 PMid:21217946 PMCid:PMC3010023

Denry I, Holloway JA. Ceramics for dental applications: A review. Materials. 2010; 3(1):351-68. https://doi.org/10.3390/ma3010351 PMCid:PMC5525170

Holand W, Beall GH. Glass-Ceramic Technology. 2nd ed. Hoboken, NJ: Wiley, American Ceramic Society, Westerville, OH, USA, 2012: 440.

https://www.ivoclarvivadent.com/zoolu-website/media/document/12207/IPS+Empress+CAD

Giordano R, McLaren EA. Ceramics overview: classification by microstructure and processing methods. Compend Contin Educ Dent. 2010; 31(9):682-8. PMid:21197937

https://www.ivoclarvivadent.com/zoolu-website/media/.../IPS+Empress+CAD+-+Denti.

Borges GA, Sophr AM, de Goes MF, Sobrinho LC, Chan DC. Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics. J Prosthet Dent. 2003; 89(5):479-88. https://doi.org/10.1016/S0022-3913(02)52704-9

Kracek FC. The binary system Li2O - SiO2. J Phys Chem. 1930:34(12); 2641-50. https://doi.org/10.1021/j150318a001

Culp L, McLaren EA. Lithium disilicate: the restorative material of multiple options. Compend Contin Educ Dent. 2010; 31(9):716-25. PMid:21197940

https://www.ivoclarvivadent.com/zoolu-website/media/document/9793/IPS+e-max+CAD

https://www.vita-zahnfabrik.com/pressemitteilungen_detail_ru,,52571,detail.print

Kruger S, Deubener J, Ritzberger C, Holand W. Nucleation kinetics of lithium metasilicate in ZrO2-bearing lithium disilicate glasses for dental application. Int J Appl Glass Sci. 2013; 4(1):9-19. https://doi.org/10.1111/ijag.12011

Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res. 2014; 93(12):1235-42. https://doi.org/10.1177/0022034514553627 PMid:25274751 PMCid:PMC4237640

https://panadent.co.uk/wp-content/uploads/2014/10/Vita-Suprinity-Technical-and-Scientific-Document.pdf

https://www.dentsply.com/content/dam/dentsply/pim/manufacturer/Restorative/Indirect_Restoration/Ceramics/CAD_CAM_Ceramics/CELTRA_DUO/BRO_Celtra_Duo_EN_2017_08.pdf

Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater. 2016; 32(7):908-14. https://doi.org/10.1016/j.dental.2016.03.013 PMid:27087687

https://www.ivoclarvivadent.com/zoolu-website/media/document/.../IPS+e-max+Cera.

https://www.ivoclarvivadent.com/zoolu-website/media/.../40689/IPS+e-max+ZirPress

Peng JY, Luo XP, Zhang L. Flexural strength and open porosity of two different veneering ceramics for zirconia framework. Int J Appl Ceram Tech. 2015; 12(2):383-9. https://doi.org/10.1111/ijac.12158

Leung BT, Tsoi JK, Matinlinna JP, Pow EH. Comparison of mechanical properties of three machinable ceramics with an experimental fluorophlogopite glass ceramic. J Prosthet Dent. 2015; 114(3):440-6. https://doi.org/10.1016/j.prosdent.2015.02.024 PMid:26013069

Li RWK, Chow TW, Matinlinna JP. Ceramic dental biomaterials and CAD/CAM technology: State of the art. J Prosthodont Res. 2014; 58(4):208-16. https://doi.org/10.1016/j.jpor.2014.07.003 PMid:25172234

http://www.cerec.co.il/downloads/vita_in_ceram.pdf

Guazzato M, Albakry M, Swain MV, Ironside J. Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia. Int J Prosthodont. 2002; 15(4):339-46. PMid:12170847

Lu YC, Tseng H, Shin YH, Lee SY. Effects of surface treatments on bond strength of glass-infiltrated ceramic. J Oral Rehabil. 2001; 28(9):805-13. https://doi.org/10.1046/j.1365-2842.2001.00735.x

Özcan M, Alkumru HN, Gemalmaz D. The effect of surface treatment on the shear bond strength of luting cement to a glass-infiltrated alumina ceramic. Int J Prosthodont. 2001; 14(4):335-9. PMid:11508088

Valandro LF, Della Bona A, Antonio Bottino M, Neisser MP. The effect of ceramic surface treatment on bonding to densely sintered alumina ceramic. J Prosthet Dent. 2005; 93(3):253-9. https://doi.org/10.1016/j.prosdent.2004.12.002 PMid:15775926

Kern M, Wegner SM. Bonding to zirconia ceramic: Ahesion methods and their durability. Dent Mater. 1998; 14(1):64-71. https://doi.org/10.1016/S0109-5641(98)00011-6

Ben-Nissan B, Choi AH, Cordingley R. Alumina ceramics. In: Bioceramics and their clinical applications. Kokubo T edit., Woodhead Publishing LTD, Cambridge, UK, 2008:223-242. https://doi.org/10.1533/9781845694227.2.223

Tsotsos S, Giordano R. CEREC inLab: Clinical Aspects, Machine and Materials. CJDT Spectrum January/February. 2003:64-8.

Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NR. All-ceramic systems: Laboratory and clinical performance. Dent Clin North Am. 2011; 55(2):333-52. https://doi.org/10.1016/j.cden.2011.01.005 PMid:21473997

Scherrer SS, Quinn GD, Quinn JB. Fractographic failure analysis of a Procera AllCeram crown using stereo and scanning electron microscopy. Dent Mater. 2008; 24(8):1107-13. https://doi.org/10.1016/j.dental.2008.01.002 PMid:18314187 PMCid:PMC2504694

Subbarao EC. Zirconia- an overview. In: Heuer AH, Hobbs LW, editors. Advances in Ceramics. The American Ceramic Society, Westerville,1981:1-24.

Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc. 1972; 55(6):303-5. https://doi.org/10.1111/j.1151-2916.1972.tb11290.x

Kisi EH, Howard CJ. Crystal structures of zirconia phases and their inter-relation. Key Eng Mater. 1998; 153-154:1-36. https://doi.org/10.4028/www.scientific.net/KEM.153-154.1

Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: An overview. Dent Mater. 2008; 24(3):289-98. https://doi.org/10.1016/j.dental.2007.05.005 PMid:17624420

Denry I, Kelly R. State of the art of zirconia for dental applications. Dent Mater. 2008; 24(3):299-307. https://doi.org/10.1016/j.dental.2007.05.007 PMid:17659331

Chevalier J, Gremillard L, Virkar AV, Clarke DR. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc. 2009; 92(9):1901-20. https://doi.org/10.1111/j.1551-2916.2009.03278.x

Ruff O, Ebert F. Refractory ceramics: I. The forms of zirconium dioxide. Z Anorg Allg Chem. 1929; 180(1):19-41. https://doi.org/10.1002/zaac.19291800104

Ruff O, Ebert F, Stephan E. Contributions to the ceramics of highly refractory materials: II. System zirconia-lime. Z Anorg Allg Chem. 1929; 180(1):215-24. https://doi.org/10.1002/zaac.19291800122

Porter DL, Heuer AH. Microstructural development in MgO-partially stabilized zirconia (Mg-PSZ). J Am Ceram Soc. 1979; 62(5-6):298-305. https://doi.org/10.1111/j.1151-2916.1979.tb09484.x

Garvie RC, Urbani C, Kennedy DR, McNeuer JC. Biocompatibility of magnesia-partially stabilized zirconia (Mg-PSZ) ceramics. J Mater Sci. 1984; 19(10):3224-8. https://doi.org/10.1007/BF00549808

Heuer AH. Transformation toughening in ZrO2-containing ceramics. J Am Ceram Soc. 1987; 70(10):689-98. https://doi.org/10.1111/j.1151-2916.1987.tb04865.x

Fassina P, Zaghini N, Bukat A, Piconi C, Greco F, Piantelli S. Yttria and calcia partially stabilized zirconia for biomedical applications. In: Ravagliogli A, Krajewski A, editors. Bioceramics and the human body. London and New York: Elsevier Applied Science, 1992:223-9. https://doi.org/10.1007/978-94-011-2896-4_29

Tanaka K, Tamura J, Kawanabe K, Nawa M, Oka M, Uchida M, Kokubo T, Nakamura T. Ce-TZP/Al2O3 nanocomposite as a bearing material in total joint replacement. J Biomed Mater Res B: Appl Biomater. 2002; 63(3):262-70. https://doi.org/10.1002/jbm.10182 PMid:12115757

Zhang F, Vanmeensel K, Inokoshi M, Batuk M, Hadermann J, Van Meerbeek B, Naert I, Vleugels J. Critical influence of alumina content on the low temperature degradation of 2-3 mol% yttria-stabilized TZP for dental restorations. J Eur Ceram Soc. 2015; 35(2):741-50. https://doi.org/10.1016/j.jeurceramsoc.2014.09.018

Hannink RHJ, Kelly PM, Muddle BC. Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc. 2000; 83(3):461-87. https://doi.org/10.1111/j.1151-2916.2000.tb01221.x

Claussen N, Steeb J. Toughening of ceramic composites by oriented nucleation of microcracks. J Am Ceram Soc. 1976; 59(9-10):457-8. https://doi.org/10.1111/j.1151-2916.1976.tb09524.x

Lughi V, Sergo V. Low temperature degradation-aging-of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater. 2010; 26(8):807-20. https://doi.org/10.1016/j.dental.2010.04.006 PMid:20537701

Ban S, Sato H, Suehiro Y, Nakahishi H, Nawa M. Biaxial flexure strength and low temperature degradation of Ce-TZP/Al2O3 nanocomposite and Y-TZP as dental restoratives. J Biomed Mater Res B: Appl Biomater. 2008; 87(2):492-8. https://doi.org/10.1002/jbm.b.31131 PMid:18491411

Porter DL, Heuer AH. Mechanisms of toughening partially stabilized zirconia (PSZ). J Am Ceram Soc. 1977; 60(3-4):183-4. https://doi.org/10.1111/j.1151-2916.1977.tb15509.x

Lange FF, Dunlop GL, Davis BI. Degradation during ageing of transformation-toughened ZrO2-Y2O3 materials at 250°C. J Am Ceram Soc. 1986; 69(3):237-40. https://doi.org/10.1111/j.1151-2916.1986.tb07415.x

Yoshimura M, Noma T, Kawabata K, Somiya S. Role of H2O on the degradation process of Y-TZP. J Mater Sci Lett. 1987; 6(4):465-7. https://doi.org/10.1007/BF01756800

Deville S, Chevalier J, Fantozzi G, Torrecillas R, Bartolom? JF, Moya JS. Atomic force microscopy study of the surface degradation mechanisms of zirconia based ceramics. Ceram Eng Sci Proc. 2004; 25:289-94. https://doi.org/10.1002/9780470291191.ch44

Deville S, Chevalier J, Dauvergne C, Fantozzi G, Bartolom? JF, Moya JS, Torrecillas R. Microstructural investigation of the aging behavior of (3Y-TZP)-Al2O3 composites. J Am Ceram Soc. 2005; 88(5):1273-80. https://doi.org/10.1111/j.1551-2916.2005.00221.x

Lee JK, Kim H. Surface crack initiation in 2Y-TZP ceramics by low temperature aging. Ceram Int. 1994; 20(6):413-8. https://doi.org/10.1016/0272-8842(94)90028-0

Li J-F, Watanabe R, Zhang B-P, Asami K, Hashimoto K. X-ray photoelectron spectroscopy investigation on the low-temperature degradation of 2 mol% ZrO2-Y2O3 ceramics. J Am Ceram Soc. 1996; 79(12):3109-12. https://doi.org/10.1111/j.1151-2916.1996.tb08084.x

Tani E, Yoshimura M, Somiya S. Revised phase diagram of the system ZrO2-CeO2 below 1400 C. J Am Ceram Soc. 1983; 66(7):506-10. https://doi.org/10.1111/j.1151-2916.1983.tb10591.x

Sato T, Shimada M. Transformation of ceria-doped tetragonal zirconia polycrystals by annealing in water. Am Ceram Soc Bull. 1985; 64:1382-4.

Tsukuma K. Mechanical properties and thermal stability of CeO/sub2 containing tetragonal zirconia polycrystals. Am Ceram Soc Bull. 1986; 65(10):1386-9.

Tsukuma K, Shimada M. Strength, fracture toughness and Vickers hardness of CeO2-stabilized tetragonal ZrO2 polycrystals (Ce-TZP). J Mater Sci. 1985; 20(4):1178-84. https://doi.org/10.1007/BF01026311

Heussner K-H, Claussen N. Strengthening of ceria-doped tetragonal zirconia polycrystals by reduction-induced phase transformation. J Am Ceram Soc. 1989; 72(6):1044-6. https://doi.org/10.1111/j.1151-2916.1989.tb06267.x

Sergo V, Schmid C, Meriani S, Evans AG. Mechanically induced darkening of alumina/ceria-stabilized zirconia composites. J Am Ceram Soc. 1994; 77(11):2971-6. https://doi.org/10.1111/j.1151-2916.1994.tb04533.x

Schmauder S, Schubert U. Significance of internal stresses for the martensitic transformation in yttria-stabilized tetragonal zirconia polycrystals during degradation. J Am Ceram Soc. 1986; 69(7):534-40. https://doi.org/10.1111/j.1151-2916.1986.tb04789.x

Sergo V, Pompe W, Clarke DR. Deformation bands in ceria-stabilized tetragonal zirconia/alumina: I. Measurement of internal stresses. J Am Ceram Soc. 1995; 78(3):633-40. https://doi.org/10.1111/j.1151-2916.1995.tb08224.x

Sergo V, Clarke DR. Deformation bands in ceria-stabilized tetragonal zirconia/alumina: II. Stress-induced aging at room temperature. J Am Ceram Soc. 1995; 78(3):641-4. https://doi.org/10.1111/j.1151-2916.1995.tb08225.x

Suresh A, Mayo MJ, Porter WD, Rawn CJ. Crystallite and grain-size-dependent phase transformations in yttria-doped zirconia. J Am Ceram Soc. 2003; 86(2):360-2. https://doi.org/10.1111/j.1151-2916.2003.tb00025.x

Hallmann L, Mehl A, Ulmer P, Reusser E, Stadler J, Zenobi R, Stawarczyk B, ?zcan M, H?mmerle CHF. The influence of grain size on low-temperature degradation of dental zirconia. J Biomed Mater Res. Part B. 2012; 100B(2):447-56. https://doi.org/10.1002/jbm.b.31969 PMid:22121144

Inokoshi M, Zhang F, De Munck J, Minakuchi S, Naert I, Vleugels J, Van Meerbeek B, Vanmeensel K. Influence of sintering conditions on low-temperature degradation of dental zirconia. Dent Mater. 2014; 30(6):669-78. https://doi.org/10.1016/j.dental.2014.03.005 PMid:24698437

Hjerppe J, Vallittu PK, Fröberg K, Lassila LVJ. Effect of sintering time on bi-axial strength of zirconium dioxide. Dent Mater. 2009; 25(2):166-71. https://doi.org/10.1016/j.dental.2008.05.011 PMid:18632146

Chevalier J, Deville S, Münch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials. 2004; 25(24):5539-45. https://doi.org/10.1016/j.biomaterials.2004.01.002 PMid:15142736

Zhang F, Vanmeensel K, Inokoshi M, Batuk M, Hadermann J, Van Meerbeek B, Naert I, Vleugels J. 3Y-TZP ceramics with improved hydrothermal degradation resistance and fracture toughness. J Eur Ceram Soc. 2014; 34:2453-63. https://doi.org/10.1016/j.jeurceramsoc.2014.02.026

Inokoshi M, Vanmeensel K, Zhang F, De Munck J, Eliades G, Minakuchi S, Naert I, Van Meerbeek B, Vleugels J. Aging resistance of surface-treated dental zirconia. Dent Mater. 2015; 31(2):182-94. https://doi.org/10.1016/j.dental.2014.11.018 PMid:25572860

KosmaÄ T, Oblak ÄŒ, Jevnikar P, Funduk N, Marion Lj. Strength and reliability of surface treated Y-TZP dental ceramics. J Biomed Mater Res. 2000; 53(4):304-13. https://doi.org/10.1002/1097-4636(2000)53:4<304::AID-JBM4>3.0.CO;2-S

Hjerppe J, Närhi T, Fröberg K, Vallittu PK, Lassila LVJ. Effect of shading the zirconia framework on biaxial strength and surface microhardness. Acta Odontol Scand. 2008; 66(5):262-7. https://doi.org/10.1080/00016350802247123 PMid:18645687

Piconi C, Maccauro G, Muratori F. Alumina matrix composites in arthroplasty. Key Eng Mater. 2005; 284-286:979-82. https://doi.org/10.4028/www.scientific.net/KEM.284-286.979

Winchester LJ. Bond strengths of five different ceramic brackets: an in vitro study. Eur J Orthod. 1991; 13(4):293-305. https://doi.org/10.1093/ejo/13.4.293 PMid:1915618

Meyenberg KH, Lüthy H, Schärer P. Zirconia posts: a new all-ceramic concept for nonvital abutment teeth. J Esthet Dent. 1995; 7(2):73-80. https://doi.org/10.1111/j.1708-8240.1995.tb00565.x PMid:8593239

Luthardt RG, Sandkuhl O, Reitz B. Zirconia-TZP and alumina - advanced technologies for the manufacturing of single crowns. Eur J Prosthodont Restor Dent. 1999; 7(4):113-9. PMid:11314423

Komine F, Blatz MB, Matsumura H. Current status of zirconia-based fixed restorations. J Oral Sci. 2010; 52(4):531-9. https://doi.org/10.2334/josnusd.52.531 PMid:21206154

Li J, Liao H, Hermansson L. Sintering of partially-stabilized zirconia and partially-stabilized zirconia-hydroxyapatite composites by hot isostatic pressing and pressureless sintering. Biomaterials. 1996; 17(18):1787-90. https://doi.org/10.1016/0142-9612(95)00356-8

Stawarczyk B, Özcan M, Trottmann A, Hämmerle CHF, Roos M. Evaluation of flexural strength of hipped and presintered zirconia using different estimation methods of Weibull statistics. J Mech Behav Biomed Mater. 2012;10:227-34. https://doi.org/10.1016/j.jmbbm.2012.01.020 PMid:22520434

Badwal SPS. Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ionics. 1992; 52(1-3):23-32. https://doi.org/10.1016/0167-2738(92)90088-7

Fasbinder DJ. Chairside CAD/CAM: An overview of restorative material options. Compend Contin Educ Dent. 2012; 33(1):50,52-8. PMid:22432177

American Dental Association. CDT: Code on dental procedures and nomenclature. http://www.ada.org/en/publications/cdt/.

http://www.d-way.cz/data/product/13/23/files/Lava_Ult_TPP.pdf

Studart AR. Towards high-performance bio-inspired composites. Advanced Materials. 2012; 24(37):5024-44. https://doi.org/10.1002/adma.201201471 PMid:22791358

https://mam.vita-zahnfabrik.com/portal/ecms_mdb_download.php?id=31792&sprache=en&fallback=&cls_session_id=&neuste_version=1

https://www.vitanorthamerica.com/en-US/VITA-ENAMIC-multiColor-276.html

Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater. 2013; 29(4):419-26. https://doi.org/10.1016/j.dental.2013.01.002 PMid:23410552

Lauvahutanon S, Takahashi H, Shiozawa M, Iwasaki N, Asakawa Y, Oki M, Finger WJ, Arksornnukit M. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J. 2014; 33(5):705-10. https://doi.org/10.4012/dmj.2014-208 PMid:25273052

Mörmann W, Stawarczyk B, Ender A, Sener B, Attin T, Mehl A. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: Two-body wear, gloss retention, roughness and Martens hardness. J Mech Behav Biomed Mater. 2013; 20(4):113-25. https://doi.org/10.1016/j.jmbbm.2013.01.003 PMid:23455168

Dirxen C, Blunck U, Preissner S. Clinical performance of a new biomimetic double network material. Open Dent J. 2013; 6(7):118-22. https://doi.org/10.2174/1874210620130904003 PMid:24167534 PMCid:PMC3807582

http://www.gcamerica.com/products/digital/CERASMART_Universal/GCA_CERASMART_Universal_Bro-iPad.pdf

Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015;114(4):587-93. https://doi.org/10.1016/j.prosdent.2015.04.016 PMid:26141648

Published

2018-09-24

How to Cite

1.
Bajraktarova-Valjakova E, Korunoska-Stevkovska V, Kapusevska B, Gigovski N, Bajraktarova-Misevska C, Grozdanov A. Contemporary Dental Ceramic Materials, A Review: Chemical Composition, Physical and Mechanical Properties, Indications for Use. Open Access Maced J Med Sci [Internet]. 2018 Sep. 24 [cited 2024 Mar. 29];6(9):1742-55. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2018.378

Issue

Section

Dental Science - Review

Most read articles by the same author(s)