Superoxide Dismutase Levels and Polymorphism (Ala16val) In Tuberculosis Patients with Diabetes Mellitus in Medan City

Authors

  • Mutiara Indah Sari Departement of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Jl. Dr. Mansur No.5 Medan, Indonesia
  • Milahayati Daulay Departement of Physiology, Faculty of Medicine, Universitas Sumatera Utara, Jl. Dr. Mansur No.5 Medan, Indonesia
  • Dian Dwi Wahyuni Departement of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Jl. Dr. Mansur No.5 Medan, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2019.195

Keywords:

Superoxide Dismutase, Gene, Polymorphism, Tuberculosis, Diabetes Mellitus

Abstract

BACKGROUND: Infectious diseases and metabolic disorders would result in oxidative stress in cells. Superoxide dismutase (SOD) is an antioxidant present inside cells that acts against oxidative stress. SOD gene polymorphism can affect the activity and levels of SOD.

AIM: This study aimed to analyse SOD levels and polymorphism of gene (ala16val) that regulated SOD in tuberculosis patients with diabetes mellitus in Medan city.

METHODS: A total of 40 tuberculosis patients with diabetes mellitus and 40 healthy subjects participated in the study. The levels of SOD were measured using enzyme-linked immunosorbent assay (ELISA). Analysis of SOD gene polymorphism (ala16val) was done using polymerase chain reaction-restriction fragment lengths polymorphisms (PCR-RFLP) with BsaW1 as the restriction enzyme. The statistical significance was determined using the Mann Whitney test, Fisher's exact test, and Kruskal Wallis test (p < 0.05).

RESULTS: The SOD levels of tuberculosis patients with diabetes mellitus were lower than those of the healthy subjects (102.474 ± 36.07 U/L vs 294.543 ± 58.75 U/L, p < 0.05). Patients of tuberculosis with diabetes mellitus tend to have more value/Val genotypes than the healthy group (57.5% vs 50%, p > 0.05). There was no association between SOD levels and SOD gene polymorphism (ala16val) in tuberculosis patients with diabetes mellitus.

CONCLUSION: In this study, there was an association between the levels of SOD and tuberculosis patients with diabetes mellitus, but not for the SOD gene polymorphism (ala16val). The SOD gene polymorphism (ala16val) was not the key role to influence the SOD levels in tuberculosis patients with diabetes mellitus in Medan city.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

World Health Organization. Global Tuberculosis Report 2012. France: World Health Organization, 2012.

Cooper AM. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol. 2009; 27:393-422. https://doi.org/10.1146/annurev.immunol.021908.132703 PMid:19302046 PMCid:PMC4298253

Dalvi SM, Patil VW, Ramraje NN, Phadtare JM. Lipid peroxidation, Superoxide dismutase and catalase co-relation in pulmonary and extra pulmonary tuberculosis. Free Radicals Antioxidants. 2012; 2(4):1–5. https://doi.org/10.5530/ax.2012.4.1

Hashmi MA, Ahsan B, Shah SIA, and Khan MIU. Antioxidant Capacity and Lipid Peroxidation Product in Pulmonary Tuberculosis. Al Ameen J Med Sci. 2012; 5(3):313-319.

Dooley KE, Chaisson RE. Tuberculosis and diabetes mellitus: convergence of two epidemics. Lancet Infect Dis. 2009; 9(12):737-46. https://doi.org/10.1016/S1473-3099(09)70282-8

World Health Organization. A collaborative framework for care and control of Tuberculosis and diabetes, 2011.

Baghaei P, Marjani M, Javanmard P, Tabarsi P, Masjedi MR. Diabetes mellitus and tuberculosis facts and controversies. J Diabetes Metab Disord. 2013; 20:12(1):58.

Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 2015; 6(3):456-80. https://doi.org/10.4239/wjd.v6.i3.456 PMid:25897356 PMCid:PMC4398902

Sari MI, Ilyas S, Widyawati T, Antika MA. Effect of lawsonia innermis (linn) leaves ethanolic extract on blood glucose and malondialdehyde level in alloxan-induced diabetic rats. IOP Conf Ser Earth Environ Sci. 2018; 130(1). https://doi.org/10.1088/1755-1315/130/1/012034

Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. SQU Med J. 2012; 12(February):5–18.

Ganjifrockwala FA, Joseph JT, George G. Decreased total antioxidant levels and increased oxidative stress in South African type 2 diabetes mellitus patients. J Endocrinol Metab Diabetes South Africa. 2017; 22(2):21–5. https://doi.org/10.1080/16089677.2017.1324590

Ezeiruaku FC, Michael KC. Extracellular Superoxide Dismutase (EC.SOD) Evaluation in Type 1 and 2 Diabetes Mellitus Subjects in Yenagoa, Bayelsa State, Nigeria. 2015; 5(22)

Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine. 2002; 33(3):337-349. https://doi.org/10.1016/S0891-5849(02)00905-X

Pourvali K, Abbasi M, Mottaghi A. Role of Superoxide Dismutase 2 Gene Ala16Val Polymorphism and Total Antioxidant Capacity in Diabetes and its Complications. Avicenna J Med Biotechnol. 2016; 8(2):48-56. PMid:27141263 PMCid:PMC4842242

Flekac M, Skrha J, Hilgertova J, Lacinova Z, Jarolimkova M. Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus. BMC Med Genet. 2008; 9:30. https://doi.org/10.1186/1471-2350-9-30 PMid:18423055 PMCid:PMC2386118

Perhimpunan Dokter Paru Indonesia. Tuberkulosis: Pedoman diagnosis dan penatalaksanaan di Indonesia. Jakarta: Indah Offset Citra Grafika, 2011.

Perkumpulan Endokrinologi Indonesia. Konsensus Pengendalian dan Pencegahan Diabetes Melitus Tipe 2 di Indonesia, 2015:78. Available at: http://pbperkeni.or.id/doc/konsensus.pdf

Jack CIA, Jackson MJ, Hind CR. Circulating markers of free radical activity in patients with pulmonary tuberculosis. Tubercle and lung disease. 1994; 75(2):132-7.

Tiwari BK, Pandey KB, Abidi AB, Rizvi SI. Markers of oxidative stress during diabetes mellitus. Journal of biomarkers. 2013; 2013.

Rodwell VW, Bender DA, Bitham KM, Kennelly PJ, Weil PA. Harper's Illustrated Biochemistry 31st Edition. Mcgraw-Hill Medical, 2015:693.

Desideri A, Falconi M. Prokaryotic Cu, Zn superoxide dismutases. Biochem Soc Trans. 2003; 31(Pt 6):1322-5. https://doi.org/10.1042/bst0311322 PMid:14641054

Lee MH, Park JW. Lipid peroxidation products mediate damage of superoxide dismutase. Biochem Mol Biol Int. 1995; 35(5):1093–102. PMid:7549928

Bresciani G, da Cruz IB, González-Gallego J. Manganese superoxide dismutase and oxidative stress modulation. Adv Clin Chem. 2015; 68:87-130. https://doi.org/10.1016/bs.acc.2014.11.001 PMid:25858870

Holy B and Ngoye BO. Clinical Relevance of Superoxide Dismutase and Glutathione Peroxidase Levels in Management of Diabetes Type2. International Journal of Contemporary Medical Research. 2016; 3(5).

Shenoy SM, Devi UH, Kumari SN, Subramanya C. A study on Association of Antioxidant Status of Red Blood Cells with Type 2 Diabetes. Journal of Clinical and Diagnostic Research. 2018; 12(8): BC16-BC18. https://doi.org/10.7860/JCDR/2018/36006.11920

Zahreddine AM, Moustafa ME, Chamieh HA. Susceptibility of Patients with Manganese Superoxide Dismutase Ala16val Genetic Polymorphism to Type 2 Diabetes Mellitus and its Complications in a Sample of Lebanese Population. J Genet Genome Res. 2016; 3(1):3–6. https://doi.org/10.23937/2378-3648/1410024

Nakanishi S, Yamane K, Ohishi W, Nakashima R, Yoneda M, Nojima H, et al. Manganese superoxide dismutase Ala16Val polymorphism is associated with the development of type 2 diabetes in Japanese-Americans. Diabetes Res Clin Pract. 2008; 81(3):381–5. https://doi.org/10.1016/j.diabres.2008.06.003 PMid:18653258

Sutton A, Khoury H, Prip-Buus C, Cepanec C, Pessayre D, Degoul F. The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics. 2003; 13(3):145–57. https://doi.org/10.1097/00008571-200303000-00004 PMid:12618592

Bresciani G, Cruz IBM, De Paz JA, Cuevas MJ, González-Gallego J. The MnSOD Ala16Val SNP: Relevance to human diseases and interaction with environmental factors. Free Radic Res. 2013; 47(10):781–92. https://doi.org/10.3109/10715762.2013.836275 PMid:23952573

Andrews, C. The Hardy-Weinberg Principle. Nature Education Knowledge. 2010; 3(10):65

Waziri NE, Cadmus S, Nguku P, Fawole O, Owolodun OA, Waziri H, et al. Factors associated with tuberculosis among patients attending a treatment centre in Zaria, North-west Nigeria 2010. Pan Afr Med J. 2014; 18(Supp 1):5.

Powers AC. Diabetes mellitus, In: Harrison's principles of internal medicine. Kasper DL, Fauci AS, Longo DL, Braunwald E, Hauser SL, Jameson JL, Loscalzo J. Eds. 17th edition. McGraw-Hill, New York. 2008:2275-2279.

Al-Mukhtar SB, Fadhil NN, Hanna BE. General and Gender Characteristics of Type 2 Diabetes Mellitus Among the Younger and Older Age Groups. Oman Medical Journal 2012; 27(5): 375-382. https://doi.org/10.5001/omj.2012.94 PMid:23074547 PMCid:PMC3472577

Published

2019-03-15

How to Cite

1.
Sari MI, Daulay M, Wahyuni DD. Superoxide Dismutase Levels and Polymorphism (Ala16val) In Tuberculosis Patients with Diabetes Mellitus in Medan City. Open Access Maced J Med Sci [Internet]. 2019 Mar. 15 [cited 2024 Mar. 29];7(5):730-5. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2019.195

Issue

Section

A - Basic Science

Most read articles by the same author(s)

1 2 > >>