Effects of Amnion Lyophilization Sterile Radiation against the Number of Osteoblasts and Osteocytes in Nonunion Fractures: An Experimental Research Study

Authors

  • Ahmad Fauzi Department of Surgery, Faculty of Medicine, Universitas Lampung, Bandar Lampung, Indonesia
  • Alvarino Alvarino Department of Surgery, Faculty of Medicine, Universitas Andalas, Padang, West Sumatera, Indonesia
  • Yanwirasti Yanwirasti Department of Anatomy, Faculty of Medicine, Universitas Andalas, Padang, West Sumatera, Indonesia
  • Roni Eka Sahputra Department of Surgery, Faculty of Medicine, Universitas Andalas, Padang, West Sumatera, Indonesia
  • Suharmanto Suharmanto Department of Public Health, Faculty of Medicine, Universitas Lampung, Bandar Lampung, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.10427

Keywords:

Amnion lyophilization sterile radiation, Osteoblast, Osteocyte, Nonunion fractures

Abstract

Background: This study used an experimental posttest-only control group design that involved white rats of the Sprague Dawley strain.

Methods: The samples used were 8-week-old rats, weighing 250–350 grams of the male sex. The study was conducted on five groups of rats with a total of seven rats per group.

Results: The mean value of osteocytes in the control group was 00.00 ± 00.00 and in the ALSR group it was 87.14 ± 44.85. The mean value of osteoblasts in the control group was 50.06 ± 5.76 and in the ALSR group it was 283.63 ± 22.86. This study showed that there were differences in the number of osteocytes and osteoblasts in the two groups.

Conclusion: The study reported that the ALSR group had significantly different numbers of osteoblasts and osteocytes than the control group.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Takeda S. Central control of bone remodelling. J Neuroendocrinol. 2008;20(6):802-7. https://doi.org/10.1111/j.1365-2826.2008.01732.x PMid:18601702 DOI: https://doi.org/10.1111/j.1365-2826.2008.01732.x

Tanaka Y, Nakayamada S, Okada Y. Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(5):325-8. https://doi.org/10.2174/1568010054022015 PMid:16101541 DOI: https://doi.org/10.2174/1568010054022015

Mundy GR, Chen D, Ming Z, Dallas S, Harris S. Growth regulatory factors and bone. Rev Endocr Metab Disord. 2001;2(1):105-15. https://doi.org/10.1023/a:1010015309973 PMid:11704973 DOI: https://doi.org/10.1023/A:1010015309973

Herling AW. Euthanasia of experimental animals. In: Drug Discovery and Evaluation: Pharmacological Assays. Berlin, Heidelberg: Springer; 2004. p. 1-4. DOI: https://doi.org/10.1007/978-3-642-27728-3_134-1

Blair HC, Zaidi M, Schlesinger PH. Mechanisms balancing skeletal matrix synthesis and degradation. Biochem J. 2002;364(Pt 2):329-41. https://doi.org/10.1042/BJ20020165 PMid:12023876 DOI: https://doi.org/10.1042/bj20020165

Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr., Ferrara N, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A. 2002;99(15):9656-61. https://doi.org/10.1073/pnas.152324099 PMid:12118119 DOI: https://doi.org/10.1073/pnas.152324099

Winanto ID, Kamal AF, Prabowo Y, Jusuf AA, Prasetyo M. Role of sterile lyophilized amniotic membrane in treatment of fracture with bone defect: An experimental study on sprague-dawley. J Indones Orthop. 2013;41(45):36-41.

Duong LT, Rodan GA. Regulation of osteoclast formation and function. Rev Endocr Metab Disord. 2001;2(1):95-104. https://doi.org/10.1023/a:1010063225902 PMid:11704983 DOI: https://doi.org/10.1023/A:1010063225902

Ochman S, Frey S, Raschke MJ, Deventer JN, Meffert RH. Local application of VEGF compensates callus deficiency after acute soft tissue trauma-results using a limb-shortening distraction procedure in rabbit tibia. J Orthop Res. 2011;29(7):1093-8. https://doi.org/10.1002/jor.21340 PMid:21284032 DOI: https://doi.org/10.1002/jor.21340

Luo G, Sun SJ, Weng TJ, Zhang B, Li XM, Wang ZG. Effect of osteoclasts on murine osteoblastic differentiation in early stage of co-culture. Int J Clin Exp Med. 2016;9(2):1062-72.

Kerimoğlu S, Livaoğlu M, Sönmez B, Yuluğ E, Aynaci O, Topbas M, et al. Effects of human amniotic fluid on fracture healing in rat tibia. J Surg Res. 2009;152(2):281-7. https://doi.org/10.1016/j.jss.2008.02.028 PMid:18499130 DOI: https://doi.org/10.1016/j.jss.2008.02.028

Starecki M, Schwartz JA, Grande DA. Evaluation of amniotic-derived membrane biomaterial as an adjunct for repair of critical sized bone defects. Adv Orthop Surg. 2014;2014:1-4. https://doi.org/10.1155/2014/572586 DOI: https://doi.org/10.1155/2014/572586

Garcia P, Histing T, Holstein JH, Klein M, Laschke MW, Matthys R, et al. Rodent animal models of delayed bone healing and non-union formation: A comprehensive review. Eur Cell Mater. 2013;26:1-12. https://doi.org/10.22203/ecm.v026a01 PMid:23857280 DOI: https://doi.org/10.22203/eCM.v026a01

Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781-810. https://doi.org/10.1146/annurev.cellbio.20.010403.113126 PMid:15473860 DOI: https://doi.org/10.1146/annurev.cellbio.20.010403.113126

Yang L, Tsang KY, Tang HC, Chan D, Cheah KS. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci U S A. 2014;111(33):12097-102. https://doi.org/10.1073/pnas.1302703111 PMid:25092332 DOI: https://doi.org/10.1073/pnas.1302703111

Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423(6937):349-55. https://doi.org/10.1038/nature01660 PMid:12748654 DOI: https://doi.org/10.1038/nature01660

Manolagas SC. Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115-37. https://doi.org/10.1210/edrv.21.2.0395 PMid:10782361 DOI: https://doi.org/10.1210/er.21.2.115

Loiselle AE, Paul EM, Lewis GS, Donahue HJ. Osteoblast and osteocyte-specific loss of connexin43 results in delayed bone formation and healing during murine fracture healing. J Orthop Res. 2013;31(1):147-54. https://doi.org/10.1002/jor.22178 PMid:22718243 DOI: https://doi.org/10.1002/jor.22178

Downloads

Published

2022-09-30

How to Cite

1.
Fauzi A, Alvarino A, Yanwirasti Y, Sahputra RE, Suharmanto S. Effects of Amnion Lyophilization Sterile Radiation against the Number of Osteoblasts and Osteocytes in Nonunion Fractures: An Experimental Research Study. Open Access Maced J Med Sci [Internet]. 2022 Sep. 30 [cited 2024 Apr. 25];10(B):2302-6. Available from: https://oamjms.eu/index.php/mjms/article/view/10427

Most read articles by the same author(s)

1 2 > >>