Chloroform Extract of Plumbago zeylanica Linn. Roots Ameliorates the Epidermal Thickness of Imiquimod-induced Psoriatic Mice through Cell Cycle and Apoptosis

Authors

  • Mrs. Mitayani Doctorate Program of Medical Science, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia; Department of Medical Biology, Faculty of Medicine, Universitas Muhammadiyah Palembang, South Sumatera, Indonesia image/svg+xml https://orcid.org/0000-0002-3936-3883
  • Dono Indarto Department of Physiology and Biomedical Laboratory, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia https://orcid.org/0000-0001-7420-5816
  • Harijono Kariosentono Doctorate Program of Medical Science, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia; Department of Dermato-Venereology, Faculty of Medicine, Universitas Sebelas Maret, Dr. Moewardi Hospital, Surakarta, Indonesia image/svg+xml
  • Bambang Purwanto Doctorate Program of Medical Science, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia; Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret, Dr. Moewardi Hospital, Surakarta, Indonesia image/svg+xml
  • Soetrisno Soetrisno Doctorate Program of Medical Science, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia; Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Sebelas Maret, Dr. Moewardi Hospital, Surakarta, Indonesia image/svg+xml
  • Risya Cilmiaty Doctorate Program of Medical Science, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia; Department of Dentistry, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia image/svg+xml

DOI:

https://doi.org/10.3889/oamjms.2022.9540

Keywords:

Caspase-3, Cyclin-dependent kinase, Cyclin, Plumbagin, Plumbago zeylanica, Psoriasis vulgaris

Abstract

Introduction: Psoriasis vulgaris is a chronic skin disease which is characterized by recurrent scales on skin. The global prevalence of this disease has increased in ten years. Plumbagin is an active compound in the P. zeylanica Linn. Some recent studies revealed that P. zeylanica Linn extracts have the antiproliferative activity, which is used for treatment of some human diseases. The aim of this study was to investigated the effect of Chloroform extract of P. zeylanica Linn roots (CEP) on epidermal thickness of Imiquimod-induced psoriatic mice.

Methods: This was a post-test only control group design. A total of 42 male BALB/c mice was divided into six groups. Mice in treatment groups orally received 25, 50, and 100 mg/kg body weight CEP, respectively while positive control orally received 1 mg/kg body weight Methotrexate for seven days. Evaluation of epidermal thickness based on histological changes, serum IL-23 level by ELISA, and Cyclin-dependent kinase 2, Cyclin A, and Caspase-3 expressions by immunohistochemistry.

Results: Administrations of CEP decreased the epidermal thickness of psoriatic plaques in all treatment groups (p = 0.002, 0.003, and 0.016 respectively) compared to negative control but it did not reduce the serum IL-23 level.  The expressions of CDK2 and Cyclin A reduced in T2 and T3 groups and the expression of Caspase-3 increased was only in T3 group.

Conclusion: Chloroform extract of P. zeylanica Linn roots administrations reduce the epidermal thickness of Imiquimod-induced psoriatic mice by inhibition of keratinocyte cell cycle and induction of Caspase-3 expression.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Albanesi C. Immunology of psoriasis. In: Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyand CM, editors. Clinical Immunology. 5th ed. Amsterdam: Elsevier Ltd.; 2019. p. 871-8.e1. https://doi.org/10.1016/B978-0-7020-6896-6.00064-8 DOI: https://doi.org/10.1016/B978-0-7020-6896-6.00064-8

Global Burden Study. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545-602. https://doi.org/10.1016/S0140-6736(16)31678-6 PMid:27733282 DOI: https://doi.org/10.1016/S0140-6736(16)31678-6

Pratiwi KD, Damayanti D. Psoriasis vulgaris: A retrospective study. Period Dermatol Venereol. 2018;30(3):248-54.

Sylviningrum T, Putranti IO, Sari OP, Arjadi F, Sudibyo ES, Nurmala S. Association between HLA-Cw6 allele expression and characteristics of Javanese ethnic psoriasis patients in Indonesia. Med J Indones. 2019;28(4):370-4. https://doi.org/10.13181/mji.v28i4.3283 DOI: https://doi.org/10.13181/mji.v28i4.3283

Chan TC, Hawkes JE, Krueger JG. Interleukin 23 in the skin: Role in psoriasis pathogenesis and selective interleukin 23 blockade as treatment. Ther Adv Chronic Dis. 2018;9(5):111-9. https://doi.org/10.1177%2F2040622318759282 PMid:29796240 DOI: https://doi.org/10.1177/2040622318759282

Jiang S, Hinchliffe TE, Wu T. Biomarkers of an autoimmune skin disease-psoriasis. Genomics Proteomics Bioinformatics. 2015;13(4):224-33. https://doi.org/10.1016/j.gpb.2015.04.002 PMid:26362816 DOI: https://doi.org/10.1016/j.gpb.2015.04.002

Elango T, Dayalan H, Gnanaraj P, Malligarjunan H, Subramanian S. Impact of methotrexate on oxidative stress and apoptosis markers in psoriatic patients. Clin Exp Med. 2014;14(4):431-7. https://doi.org/10.1007/s10238-013-0252-7 PMid:23949337 DOI: https://doi.org/10.1007/s10238-013-0252-7

Bebars SMM, Al-Sharaky DR, Gaber MA, Afify DR. Immunohistochemical expression of caspase-3 in psoriasis. J Clin Diagn Res. 2017;11(7):EC01-5. https://doi.org/10.7860/JCDR/2017/25609.10145 PMid:28892900 DOI: https://doi.org/10.7860/JCDR/2017/25609.10145

Kim SA, Ryu YW, Kwon J Il, Choe MS, Jung JW, Cho JW. Differential expression of cyclin D1, Ki-67, pRb, and p53 in psoriatic skin lesions and normal skin. Mol Med Rep. 2018;17(1):735-42. https://doi.org/10.3892/mmr.2017.8015 PMid:29115643 DOI: https://doi.org/10.3892/mmr.2017.8015

Henri P, Prevel C, Pellerano M, Lacotte J, Stoebner PE, Morris MC, et al. Psoriatic epidermis is associated with upregulation of CDK2 and inhibition of CDK4 activity. Br J Dermatol. 2020;182(3):678-89. https://doi.org/10.1111/bjd.18178 PMid:31145809 DOI: https://doi.org/10.1111/bjd.18178

Gakuya DW, Itonga SM, Mbaria JM, Muthee JK, Musau JK. Ethnobotanical survey of biopesticides and other medicinal plants traditionally used in Meru central district of Kenya. J Ethnopharmacol. 2013;145(2):547-53. https://doi.org/10.1016/j.jep.2012.11.028 PMid:23202246 DOI: https://doi.org/10.1016/j.jep.2012.11.028

Singh S. Ethnobotanical study of wild plants of Parsa district, Nepal. Ecoprint. 2017;24:1-12. https://doi.org/10.3126/eco.v24i0.20641 DOI: https://doi.org/10.3126/eco.v24i0.20641

Amsalu N, Bezie Y, Fentahun M, Alemayehu A, Amsalu G. Use and conservation of medicinal plants by Indigenous People of Gozamin Wereda, East Gojjam Zone of Amhara Region, Ethiopia: An ethnobotanical approach. Evid Based Complement Alternat Med. 2018;2018:2973513. https://doi.org/10.1155/2018/2973513 PMid:29743921 DOI: https://doi.org/10.1155/2018/2973513

Dev SK, Choudhury PK, Srivastava R, Sharma M. Antimicrobial, anti-inflammatory and wound healing activity of polyherbal formulation. Biomed Pharmacother. 2019;111:555-67. https://doi.org/10.1016/j.biopha.2018.12.075 PMid:30597309 DOI: https://doi.org/10.1016/j.biopha.2018.12.075

Policepatel SS, Manikrao VG. Ethnomedicinal plants used in the treatment of skin disease in Hyderabad Karnataka region, Karnataka, India. Asian Pac J Trop Med. 2013;3(11):882-6. DOI: https://doi.org/10.1016/S2221-1691(13)60173-2

Tuasha N, Petros B, Asfaw Z. Plants used as anticancer agents in the Ethiopian traditional medical practices: A systematic review. Evid Based Complement Alternat Med. 2018;2018:6274021. https://doi.org/10.1155/2018/6274021 PMid:30402131 DOI: https://doi.org/10.1155/2018/6274021

Mandavkar YD, Jalalpure SS. A comprehensive review on Plumbago zeylanica Linn. Afr J Pharm Pharmacol. 2011;5(25):2738-47. DOI: https://doi.org/10.5897/AJPP11.739

Ito C, Matsui T, Takano M, Wu TS, Itoigawa M. Anti-cell proliferation effect of naphthoquinone dimers isolated from Plumbago zeylanica. Nat Prod Res. 2018;32(18):2127-32. https://doi.org/10.1080/14786419.2017.1366476 PMid:28823173 DOI: https://doi.org/10.1080/14786419.2017.1366476

Sundari BK, Telapolu S, Dwarakanath BS, Thyagarajan SP. Cytotoxic and antioxidant effects in various tissue extracts of Plumbago zeylanica: Implications for anticancer potential. Pharmacogn J. 2017;9(5):706-12. DOI: https://doi.org/10.5530/pj.2017.5.111

Pratama YM, I Indarto D, Suselo YH. Identification of herbal compounds as thymidylate synthase inhibitors that more potent than 5-fluorouracil using molecular docking. Nexus Kedokt Translasional. 2015;4(2 ):98-105.

Zhang R, Wang Z, You W, Zhou F, Guo Z, Qian K, et al. Suppressive effects of plumbagin on the growth of human bladder cancer cells via PI3K/AKT/mTOR signaling pathways and EMT. Cancer Cell Int. 2020;20(1):1-17. https://doi.org/10.1186/s12935-020-01607-y DOI: https://doi.org/10.1186/s12935-020-01607-y

Rajakrishnan R, Lekshmi R, Benil PB, Thomas J, Alfarhan AH, Rakesh V, et al. Phytochemical evaluation of roots of Plumbago zeylanica L. and assessment of its potential as a nephroprotective agent. Saudi J Biol Sci. 2017;24(4):760-6. http://doi.org/10.1016/j.sjbs.2017.01.001 PMid:28490944 DOI: https://doi.org/10.1016/j.sjbs.2017.01.001

Purwoko M, Sentono HK, Purwanto B, Indarto D. Phytochemical evaluation of Plumbago zeylanica roots from Indonesia and assessment of its plumbagin concentration. Folia Med (Plovdiv). 2022;64(1):96-102. https://doi.org/10.3897/folmed.64.e58086 DOI: https://doi.org/10.3897/folmed.64.e58086

Chen L, Deshpande M, Grisotto M, Smaldini P, Garcia R, He Z, et al. Skin expression of IL-23 drives the development of psoriasis and psoriatic arthritis in mice. Sci Rep. 2020;10(1):8259. https://doi.org/10.1038/s41598-020-65269-6 PMid:32427877 DOI: https://doi.org/10.1038/s41598-020-65269-6

Takuathung MN, Wongnoppavich A, Panthong A, Khonsung P, Chiranthanut N, Soonthornchareonnon N, et al. Antipsoriatic effects of wannachawee recipe on imiquimod-induced psoriasis-like dermatitis in BALB/c mice. Evid Based Complement Alternat Med. 2018;2018:7931031. https://doi.org/10.1155/2018/7931031 PMid:29619073 DOI: https://doi.org/10.1155/2018/7931031

Wang Y, Fu Y, Zhang L, Fu J, Li B, Zhao L, et al. Acupuncture needling, electroacupuncture, and fire needling improve imiquimod-induced psoriasis-like skin lesions through reducing local inflammatory responses. Evid Based Complement Alternat Med. 2019;2019:4706865. https://doi.org/10.1155/2019/4706865 PMid:31467575 DOI: https://doi.org/10.1155/2019/4706865

Hao L, Mao Y, Park J, Kwon BM, Bae EJ, Park BH. 2’-Hydroxycinnamaldehyde ameliorates imiquimod-induced psoriasiform inflammation by targeting PKM2-STAT3 signaling in mice. Exp Mol Med. 2021;53:875-84. https://doi.org/10.1038/ s12276-021-00620-z PMid:33990689 DOI: https://doi.org/10.1038/s12276-021-00620-z

Zhang S, Liu X, Mei L, Wang H, Fang F. Epigallocatechin-3- gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complement Alternat Med. 2016;16(1):334. http://doi.org/10.1186/s12906-016-1325-4 PMid:27581210 DOI: https://doi.org/10.1186/s12906-016-1325-4

Van Der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol. 2009;182:5836-45. https://doi.org/10.4049/jimmunol.0802999 PMid:19380832 DOI: https://doi.org/10.4049/jimmunol.0802999

Kjaer TN, Thorsen K, Jessen N, Stenderup K, Pedersen SB. Resveratrol ameliorates imiquimod-induced psoriasis-like skin inflammation in mice. PLoS One. 2015;10(5):e0126599. https://doi.org/10.1371/journal.pone.0126599 PMid:25965695 DOI: https://doi.org/10.1371/journal.pone.0126599

Zhao J, Di T, Wang Y, Wang Y, Liu X, Liang D. Paeoniflorin inhibits imiquimod-induced psoriasis in mice by regulating Th17 cell response and cytokine secretion. Eur J Pharmacol. 2016;772:131-43. https://doi.org/10.1016/j.ejphar.2015.12.040 PMid:26738780 DOI: https://doi.org/10.1016/j.ejphar.2015.12.040

Meng Y, Wang M, Xie X, Di T, Zhao J, Lin Y, et al. Paeonol ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice by inhibiting the maturation and activation of dendritic cells. Int J Mol Med. 2017;39(5):1101-10. https://doi.org/10.3892/ijmm.2017.2930 PMid:28339016 DOI: https://doi.org/10.3892/ijmm.2017.2930

Al-Saedi HF, Al-Zubaidy AA, Ramadhan MA, Mohammad HA. Effect of metformin gel against imiquimod induced psoriasis in mice. Int J Res Pharm Sci. 2019;10(2):795-802. DOI: https://doi.org/10.26452/ijrps.v10i2.255

Wei J, Han L, Lu C, Zhao R, Sun J, Lu Y, et al. Formula PSORI-CM01 eliminates psoriasis by inhibiting the expression of keratinocyte cyclin B2. BMC Complement Alternat Med. 2016;16:255. https://doi.org/10.1186/s12906-016-1234-6 PMid:27473420 DOI: https://doi.org/10.1186/s12906-016-1234-6

Domala A, Bale S, Godugu C. Protective effects of nanoceria in imiquimod induced psoriasis by inhibiting the inflammatory responses. Nanomedicine (Lond). 2020;15(1):5-22. https://doi.org/10.2217/nnm-2018-0515 PMid:31868114 DOI: https://doi.org/10.2217/nnm-2018-0515

Duan X, Liu X, Liu N, Huang Y, Jin Z, Zhang S, et al. Inhibition of keratinocyte necroptosis mediated by RIPK1/RIPK3/MLKL provides a protective effect against psoriatic inflammation. Cell Death Dis. 2020;11(2):134. https://doi.org/10.1038/s41419-020-2328-0 PMid:32075957 DOI: https://doi.org/10.1038/s41419-020-2328-0

Downloads

Published

2022-04-22

How to Cite

1.
Purwoko M, Indarto D, Kariosentono H, Purwanto B, Soetrisno S, Cilmiaty R. Chloroform Extract of Plumbago zeylanica Linn. Roots Ameliorates the Epidermal Thickness of Imiquimod-induced Psoriatic Mice through Cell Cycle and Apoptosis. Open Access Maced J Med Sci [Internet]. 2022 Apr. 22 [cited 2024 Mar. 28];10(B):1129-36. Available from: https://oamjms.eu/index.php/mjms/article/view/9540

Most read articles by the same author(s)

1 2 > >>