AdhO36 Liposomes from Salmonella Typhi in Combination With β-Glucan Immuno-adjuvant From Candida albicans Cell Wall as Oral Vaccine Against Typhoid Fever in Mice Model

Authors

  • Hidajah Rachmawati Department of Microbiology, Faculty of Medicine, Universitas Brawijaya Malang, Indonesia
  • Sri Winarsih Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya Malang, Indonesia; Pharmacy Study Program, Faculty of Health Science, University of Muhammadiyah Malang, Indonesia
  • Sumarno Reto Prawiro Department of Microbiology, Faculty of Medicine, Universitas Brawijaya Malang, Indonesia
  • Wisnu Barlianto Department of Pediatric, Faculty of Medicine, Universitas Brawijaya Malang, Indonesia
  • Sanarto Santoso Department of Microbiology, Faculty of Medicine, Universitas Brawijaya Malang, Indonesia
  • Djoni Djunaedi Department of Internal Medicine, Faculty of Medicine, University of Muhammadiyah Malang, Indonesia
  • Agustina Tri Endharti Department of Parasitology, Faculty of Medicine, Universitas Brawijaya Malang, Indonesia
  • Teguh Wahyu Sardjono Department of Parasitology, Faculty of Medicine, Universitas Brawijaya Malang, Indonesia
  • Husnul Khotimah Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya Malang, Indonesia
  • Gita Sekar Prihanti Department of Medical Education, Faculty of Medicine, University of Muhammadiyah Malang, Indonesia
  • Raditya W. Nugraheni Pharmacy Study Program, Faculty of Health Science, University of Muhammadiyah Malang, Indonesia
  • Firasti A. N. Sumadi Pharmacy Study Program, Faculty of Health Science, University of Muhammadiyah Malang, Indonesia
  • Helmy Yusuf Department of Pharmaceutics, Airlangga University Surabaya, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2020.4422

Keywords:

Liposomal vaccine oral, AdhO36, β-Glucan, Typhoid fever, Immunoadjuvant

Abstract

BACKGROUND: The development of an oral typhoid fever vaccine need more effective and having high-efficacy in preventing typhoid fever. The use of liposomes as a vaccine vehicle can be formulated to target a specific location or trigger the release of antigens on its target. β-Glucan derived from Candida albicans cell wall as immunoadjuvant can strengthen the immune response and increases the protection against Salmonella Typhi bacterial invasion.

AIM: This study aimed to determine the immune response in typhoid fever mice by administering a combination of AdhO36 S. Typhi liposome vaccine with β-Glucan and determine the protectivity to inhibit bacterial colonization in typhoid fever.

METHODS: Mice were divided into five groups include negative and positive control also treatment group. IL-12 was evaluated after 4-h immunization while the other (was IL-12, IL-10, Th1 (IL-2), Th2 (IL-4), and the protective test against bacterial invasion) evaluated after 96-h.

RESULTS: IL-12 level in the combination of β-Glucan and AdhO36 groups showed significantly lower than infected groups (p = 0.034), whereas IL-10 level significantly increase (p = 0.0009). The percentage of Th-1 (IL-2) cells significantly lower than infected groups (p = 0.000), this also happened on the percentage of Th-2 (IL-4) cells that significantly lower than infected groups (p = 0.018). The protective test toward bacterial invasion showed no bacterial colonization in all tissues intestine, liver, spleen, and mesenteric lymph node.

CONCLUSION: The administration of a combination of liposome containing β-Glucan from C. albicans and AdhO36 S. Typhi has a potential effect on cellular and humoral immune response.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Buckle GC, Walker CL, Black RE. Typhoid fever and paratyphoid fever: Systematic review to estimate global morbidity and mortality for 2010. J Glob Health. 2012;2(1):010401. https://doi. org/10.7189/jogh.01.010401 PMid:23198130

Lee JS, Mogasale VV, Mogasale V, Lee K. Geographical distribution of typhoid risk factors in low and middle income countries. BMC Infect Dis. 2016;16(1):732. https://doi. org/10.1186/s12879-016-2074-1

Levine MM, Simon R. The gathering storm: Is untreatable typhoid fever on the way? mBio 2018;9(2):e00482-18. https:// doi.org/10.1128/mbio.00482-18.

Maclennan C, Martin L. Vaccines Against Invasive Salmonella Disease: Current Status and Future Directions; 2014. Available from: https://www.docksci.com/vaccines-against-invasive-salmonella-disease-current-status-and-future-direc tion_5adee156d64ab29d79c621bd.html. [Last accessed on 2020 Feb 07]. https://doi.org/10.4161/hv.29054

Slayton RB, Date KA, Mintz ED. Vaccination for typhoid fever in Sub-Saharan Africa. Hum Vaccin Immunother. 2013;9(4):903-6. https://doi.org/10.4161/hv.23007 PMid:23563513

Sumarno RP, Yanuhar U, Winarsih S, Islam S, Santoso S. Detection of molecule adhesion sub-unit pili 48 kDa Salmonella Typhi by immunochemistry method using sera patients suffering from typhoid fever. J Basic Appl Sci Res. 2012;2(9):8527-32.

Winarsih S, Santoso S, Maulana M. Pengaruh Osmolaritas Medium dan Masa Inkubasi Terhadap Ekspresi outer Membrane Protein (OMP) AdhO36 Salmonella Typhi. Indonesia: Universitas Brawijaya; 2017. https://majalahfk.ub.ac.id/index.php/mkfkub/ article/view/135

Misra A, Shahiwala A. Parenteral Drug Delivery Systems in-vitro and in-vivo tools in Drug Delivery Research for Optimum Clinical Outcomes. United Kingdom: Taylor & Francis Group; 2018. https://doi.org/10.1201/b22448

Aungst BJ. Optimizing oral bioavailability in drug discovery: An overview of design and testing strategies and formulation options. J Pharm Sci. 2017;106(4):921-9. https://doi. org/10.1016/j.xphs.2016.12.002 PMid:27986598

Jug M, Hafner A, Lovrić J, Kregar ML, Pepić I, Vanić Z, et al. An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems. J Pharm Biomed Anal. 2018;147:350-66. https://doi.org/10.1016/j.jpba.2017.06.072 PMid:28720350

Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J Control Release. 2019;303:130-50. https://doi.org/10.1016/j. jconrel.2019.04.025 PMid:31022431

Marasini N, Ghaffar KA, Skwarczynski M, Toth I. Liposomes as a vaccine delivery system. In: Micro and Nanotechnology in Vaccine Development. Netherlands: Elsevier; 2017. p. 221-39. https://doi.org/10.1016/b978-0-323-39981-4.00012-9

Nugraheni RW, Yusuf H, Setyawan D. Design of liposomes based vaccine adjuvant system. Asian J Pharm Technol. 2018;8(4):261. https://doi.org/10.5958/2231-5713.2018.00040.5

Nugraheni RW, Yusuf H, Setyawan D. The design of liposomal vaccine adjuvant. Asian J Pharm Technol. 2017;7(4):234. https://doi.org/10.5958/2231-5713.2017.00035.6

Patel K. A review on herbal immunoadjuvant. Int J Pharm Life Sci. 2012;3(3):1568-76.

Vetvicka V. Glucan-immunostimulant, adjuvant, potential drug. World J Clin Oncol. 2011;2(2):115. https://doi.org/10.5306/wjco. v2.i2.115 PMid:21603320

Vetvicka V, Vetvickova J. Glucan supplementation enhances the immune response against an influenza challenge in mice. Ann Transl Med. 2015;3(2):22. PMid:25738142

Rachmawati H, Sumarno HK, Barlianto W, Sardjono TW, Endharti AT, Winarsih S. In silico approach: Beta glucan and AdhO36 combinations enhance the Th1 immune response against Salmonella typhi infection. J Glob Pharma Technol. 2019;11(4):198-206.

Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res. 2013;12(2):265-73. https://doi.org/10.4314/tjpr.v12i2.19

Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res. 2013;12(2):255-64. https://doi.org/10.4314/tjpr.v12i2.19

Foged C, Rades T, Perrie Y, Hook S. Subunit Vaccine Delivery. Berlin, Germany: Springer; 2015.

Karandikar S, Mirani A, Waybhase V, Patravale VB, Patankar S. Nanovaccines for oral delivery-formulation strategies and challenges. In: Nanostructures for Oral Medicine. Berlin, Germany: Elsevier; 2017. p. 263-93. https://doi.org/10.1016/b978-0-323-47720-8.00011-0

Winarsih S, Kosasih T, Putera MA, Rahmadhiani N, Poernomo EL, Runtuk KS, et al. β-glucan of Candida albicans cell wall extract inhibits Salmonella typhimurium colonization by potentiating cellular immunity (CD8+ and CD4+ T Cells). Rev Soc Bras Med Trop. 2019;52:e20180254. https://doi. org/10.1590/0037-8682-0254-2018 PMid:30726315

Yusuf H, Nugraheni RW, Setyawan D. Effect of cellulose derivative matrix and oligosaccharide on the solid state and physical characteristics of dimethyldioctadecylammoniumliposomes for vaccine. Res Pharm Sci. 2019;14(1):1-11. https://doi. org/10.4103/1735-5362.251847 PMid:30936927

Santoso S. Protektivitas in vivo protein Adh036 Salmonella typhi isolat malang pada mencit Balb/c. J Kedokt Brawijaya. 2018;18(3):146-53. https://doi.org/10.21776/ub.jkb.2003.019.02.2

Santoso S. Adhesin Protein of Salmonella Typhi as Imunogenic Virulance Factor in Protective S-IgA Production. Surabaya: Airlangga University; 2002.

Endharti AT, Permana S. Extract from mango mistletoes Dendrophthoe pentandra ameliorates TNBS-induced colitis by regulating CD4+ T cells in mesenteric lymph nodes. BMC Complement Altern Med. 2017;17(1):468. https://doi. org/10.1186/s12906-017-1973-z PMid:28946886

Elsner RA, Shlomchik MJ. IL-12 blocks Tfh cell differentiation during Salmonella infection, thereby contributing to germinal center suppression. Cell Rep. 2019;29(9):2796-809. https://doi. org/10.1016/j.celrep.2019.10.069 PMid:31775046

Ma X, Yan W, Zheng H, Du Q, Zhang L, Ban Y, et al. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Res. 2015;4:F1000. PMid:26918147

Elenkov IJ, Chrousos GP, Wilder RL. Neuroendocrine regulation of IL-12 and TNF-α/IL-10 balance: Clinical implications. Ann N Y Acad Sci. 2000;917(1):94-105. https://doi. org/10.1111/j.1749-6632.2000.tb05374.x PMid:11268424

Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol. 2018;9:2224. https://doi. org/10.3389/fimmu.2018.02224 PMid:30337923

Noss I, Ozment TR, Graves BM, Kruppa MD, Rice PJ, Williams DL. Cellular and molecular mechanisms of fungal β-(1→6)-glucan in macrophages. Innate Immun. 2015;21(7):759- 69. https://doi.org/10.1177/1753425915595874 PMid:26209532

Downloads

Published

2020-05-25

How to Cite

1.
Rachmawati H, Winarsih S, Prawiro SR, Barlianto W, Santoso S, Djunaedi D, Endharti AT, Sardjono TW, Khotimah H, Prihanti GS, Nugraheni RW, Sumadi FAN, Yusuf H. AdhO36 Liposomes from Salmonella Typhi in Combination With β-Glucan Immuno-adjuvant From Candida albicans Cell Wall as Oral Vaccine Against Typhoid Fever in Mice Model. Open Access Maced J Med Sci [Internet]. 2020 May 25 [cited 2024 Nov. 23];8(A):441-8. Available from: https://oamjms.eu/index.php/mjms/article/view/4422